

Climate Resilient Energy Infrastructure

Dan Calverley

Ruth Wood Steven Glynn

ITRC conference St. Catharine's College Cambridge 28 March 2014

University of Manchester

School of Mechanical, Aerospace and Civil Engineering

Outline

- Climate change and the role of infrastructure
 - » Existing vs. new
- Resnet demand scenarios
 - » Emphasis on electricity
 - » Transmission rather than distribution
- Risks of high electrification

Tyndall°Centre® for Climate Change Research

Global emission of fossil fuel CO₂ (inc. cement)

Global emission of fossil fuel CO₂ (inc. cement) 90.0 80.0 slowdown Rio + 20 70.0 60.0 economic 50.0 ... yet emissions have continued to rise (~6% in 2010, ~3% 2011 & 12) 40.0 30.0 চ 20.0 10.0 0.0 1980 1990 2000 2010 2020 2030 2040 2050

Year

Billion tonnes CO₂

for Climate Change Research Global emission of fossil fuel CO₂ (inc. cement) 90.0 80.0 Rio + 2070.0 60.0 ... so what of future emissions? 50.0 40.0 30.0 20.0 10.0 0.0 1980 1990 2000 2010 2020 2030 2040 2050

Billion tonnes CO₂

Tyndall[°]Centre[®]

Global emission of fossil fuel CO₂ (inc. cement)

Tyndall[°]Cen

for Climate Change Research

Global emission of fossil fuel CO₂ (inc. cement)

Tyndall°Centre® for Climate Change Research

Tyndall[°]Centre[®]

Billion tonnes CO₂

Global emission of fossil fuel CO₂ (inc. cement)

Tyndall°Centre® for Climate Change Research

Tyndall°Centre®

For a reasonable probability of < 2°C

- In wealthy, Annex-1 countries,
- Energy demand reduction is paramount
- Likely to mean more electricity use
- Will stress the existing transmission infrastructure

Weather-related performance of electricity infrastructure

- Whilst coping with increased levels of demand...
- Network cascade effects

New infrastructure: the 'thin end of the wedge'

for Climate Change Research

- Decarbonisation of supply
 - » Reduction in use of fossil sources
 - » Increasing renewable generation
 - » Biofuels
 - » Nuclear

Practical resource estimates

	Tidal stream	Tidal barrage	Tidal lagoon
England	11 GW	27 GW	8 GW
Wales	9.5 GW	8 GW	3.5 GW
Scotland	11 GW	10 GW	2.5 GW

Wave nearshore		Wave offshore	
Scotland	1900 MW	west	13500 MW
England	50 MW	north	6750 MW
Wales	50 MW	south west	6750 MW

Resnet demand model

- Quantitative scenarios of demand for each sector
 - » Highly disaggregated (~150 individual demand parameters)
 - » Spatially resolved into 17 zones, grouped into 3 'weather zones'
 - » Future weather dependencies based on UKCP09 high emissions
 - » Focus on 2020, 2030, 2050 and 2080
 - » Core scenario based on National Grid assumptions about uptake
 - NOT premised on meeting 2°C emissions budget

Demand-side: mitigation

- Increasing electricity penetration into non-electric sectors
 - » Heating \rightarrow heat pumps
 - » Private transport \rightarrow plug-in electric vehicles

Electric vehicles

Demand-side: adaptation

- Increasing energy demand in response to climate & weather:
 - » Comfort cooling \rightarrow air conditioning
 - » Industry \rightarrow temperature controlled environments
 - » Agriculture \rightarrow crop drying
 - » Flood protection and alleviation \rightarrow water pumping
 - » Water provision \rightarrow desalination

'National Grid-based' scenario

- Peak day 95th percentile values:
 - » HDDs: slight decline over next 7 decades
 - » Domestic CDDs up from ~2 in 2020 (Slough) to ~16 in 2080s
- Heating and cooling
 - » 'Domestic' baselines: 16°C / 22°C
 - » 'Commercial' baselines: 18°C / 18°C
- Peaks in diurnal load profile could be shifted according to
 - » policy, pricing etc (e.g. time of use tariffs)
 - » rates of uptake of new energy consuming technologies
 - » changing behavioural practices & expectations of comfort
 - » optimum specification, installation and use of technology

'National Grid-based' scenario

Sectoral energy use in NG scenario

MANCHESTER 1824 The University of Manchester

Electricity share of total energy

Climate vulnerabilities

In conclusion

- Energy efficiency can only take you so far
- To avoid climate impacts worse than UKCP09
- Demand reduction is key
 - » Especially in 'non-electrifiable' sectors

Thanks for listening dan.calverley@manchester.ac.uk

With thanks to Ruth Wood, Kevin Anderson and Steven Glynn

