

Comparing the socio-economic impacts of spatial planning options with their potential for decentralised green technologies

Tony Hargreaves
Vicky Cheng, Marcial Echenique
& Vassilis Zachariadis

email: ajh91@cam.ac.uk

Overall Integrated Modelling Framework

LUISA: Spatial Model

Domestic land change 2001-31

Trend

Domestic land added

Annual rent change

Domestic land 2001-31

Assessment: Economic

Compensating Variation | Wider South East (cost in 2001 £bn/yr)

Linking Regional Planning to Neighbourhood Design

High level Planning:

- Growths (population, economic, etc.)
- Spatial development pattern
- Land Use and Transport
- Employment and Households

Local Decisions:

- Urban Form
- Infrastructural Design (energy, water, waste, etc.)

Generic Tiles, (each tile is 1 hectare)

Density of plots (dwelling per hectare)

Integration of Infrastructural Design at Local Scale

Domestic Tile Scale Energy Supply Model Results

270.00 270.00 270.00

Year of Reference 2009 Built Case Existing Scenario Low Cost Technology Up-take Low

Cost of Decentralised Energy Supply, k£/Yr

				1				
Ward Type	D1	D2	D3	D4	51	52	53	54
Central	2.28	2.88	4.82	5.52	2.89	451	5.98	8.44
Urban	4.34	5.15	8.08	8.53	5.42	7.61	9.88	12.87
Suburban	4.34	5.15	8.08	8.53	5.42	7.61	9.88	12.87
Rural	4.34	5.15	8.08	8.53	5.42	7.61	9.88	12.87

Cost of Decentralised Energy Supply, k£/Yr

Associated Reduction in CO2, Ton/Yr

Ward Type								
waru rype	D1	D2	D3	D4	51	52	53	54
Central	21.48	27.14	45.48	52.01	27.03	42.27	56.01	79.03
Urban	11.20	13.29	20.85	22.00	13.71	19.27	25.00	32.59
Suburban	11.20	13.29	20.85	22.00	13.71	19.27	25.00	32.59
Rural	11.20	13.29	20.85	22.00	13.71	19.27	25.00	32.59

Associated Land Regd, m2

Ward Type								
maio i i pe	D1	D2	D3	D4	51	52	53	54
Central	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Urban	72.00	126.00	270.00	360.00	144.00	252.00	360.00	540.00
Suburban	72.00	126.00	270.00	360.00	144.00	252.00	360.00	540.00
Rural	72.00	126.00	270.00	360.00	144.00	252.00	360.00	540.00

Ward				
Туре	D1	D2	D3	D4
Central	1.70	2.14	3.60	4.12
Urban	4.42	5.59	9.49	11.04
Suburban	4.42	5.59	9.49	11.04
Rural	4.42	5.59	9.49	11.04

I	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
I	900.00	1440.00	1980.00	364.29	438.75	843.75	1148.94	2301.14	630.00	1012.50	1237.50
I	900.00	1440.00	1980.00	364.29	438.75	843.75	1148.94	2301.14	630.00	1012.50	1237.50
I	900.00	1440.00	1980.00	364.29	438.75	843.75	1148.94	2301.14	630.00	1012.50	1237.50 1237.50 1237.50
1											

Percentage of Decentralised Supply

Ward Type	D1		D2		D3		- [
	Heat	Electricity	Heat	Electricity	Heat	Electricity	Heat	Electricity	He
Central	17.72	30.00	18.65	30.00	19.62	30.00	20.94	30.00	17.
Urban	25.10	0.00	24.82	0.00	24.43	0.00	24.06	0.00	24.
Suburban	25.10	0.00	24.82	0.00	24.43	0.00	24.06	0.00	24.
Rural	25.10	0.00	24.82	0.00	24.43	0.00	24.06	0.00	24.

		1	13	T4		F1		F2		
		Heat	Electricity	Heat	Electricity	Heat	Electricity	Heat	Electricity	He
	Central	20.14	30.00	19.70	30.00	23.79	30.00	25.18	30.00	25.
Γ	Urban	23.79	0.00	23.54	0.00	23.55	0.00	23.22	0.00	22.
	Suburban	23.79	0.00	23.54	0.00	23.55	0.00	23.22	0.00	22.
Γ	Rural	23.79	0.00	23.54	0.00	23.55	0.00	23.22	0.00	22.

Percentage of Decentralised Supply

Ward Type	D	1	D2			
	Heat	Electricity	Heat	Electricity		
Central	24.15	30.00	24.13	30.00		
Urban	24.60	26.49	24.03	27.36		
Suburban	24.60	26.49	24.03	27.36		
Rural	24.60	26.49	24.03	27.36		

Spatial options make relatively little difference:- New dwellings more energy efficient and marginal change over 30 years is small

Decentralised supply and retrofitting of existing buildings has much bigger impact especially in suburban & rural areas

b. The cost of 'Low CO2 retrofit' options is of a similar magnitude to the value of the CO2 savings c & d. Options that also included decentralised supply technologies were not cost effective, unless the technologies become more efficient

Compensating Variation (£bn/yr)

Conclusions

- Developed an integrated modelling framework and tested the socioeconomic and environmental impacts of spatial planning policies in combination with decentralised infrastructure technologies.
- Extended the model using 'tiles' provides a 3-dimensional context for integrating neighbourhood scale supply and demand research
- The spatial planning options have only around +/-5% impact on building energy CO2 emissions in UK over a 30 year period, providing that local planning controls are in place to avoid sprawl. Previous SOLUTIONS project found similar impacts on car travel.
- Retrofitting and technologies have a far greater impact on reducing CO2 emissions than spatial planning (and could be implemented more quickly), although decentralised energy supply is generally not yet cost effective.
- The socio-economic benefits of a market-led policy could be sufficient to subsidise these measures to mitigate the environmental impacts of building energy consumption.
- Analysis is underway on the other infrastructure sectors before reaching final conclusions.