ITRC |

Infrastructure Transitions Research Consortium

Working paper series

Derived and processed data report

David Alderson and Stuart Barr,
School of Civil Engineering and Geosciences, Newcastle University

June 2013

Engineering and Physical Sciences
Researc h Council

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

Table of Contents

TADIE OF CONTENTS ettt ettt et e e st e sttt e s bt e e sa bt e e sttt e sabe e e sabeeesabeeesabeeesabeeesabeeesabenesabeeeanbeeesabeeenn 1
[o] T4 U] U UPUPRRROS 3
Software eMpPloyed AUING PrOCESSING: ...uuiiiiiieeeiiicciitieee e e e e e e e eeescertrreeeeeaeeeeeee s asbtaaaseeaaaasesaaaassrsssasasaaaaeeeessasssrsasanees 4
[o] o] g 1= =1 o OO PPPPPPRN 4
(0101 BN YU T ol TP PP 5

(ol 0alaaTe oI TaY o1V i alo Pl = TR o] o 4 o - | €3 SR U PRURUP 6
DEY N o] feTol=X o T aTo I U] o] (oY= Yo 1o -0 UPUPPRROS 7
ol o< o KLU L TP ORI 7

L] ol =T ol o1 [o] 1 4| (oL TP PPPPPPR 16
(Lol oY) o 1U1 - o] o IS UUU 19
oY o= LA F= Y =] 0[] =4 VU UUU 21
o o= LA F=Y I g F= P2 [o U UUU 36
oY o= LA F= Y I L €1 U UUU 38
oY o= L = I 1 =LV L (<] U UUU 41
oY o= LA F= Y o] [T KTV 1) o U UUU 46
LoV Y o e IRV 2= 1 €Yo L1 = [<L UUU 51
oY o= LA F= Y I o =1 0 1 o] o PSS UUU 54
Ordnance SUIVEY POINTS Of INTEIEST....uuuiiiii ittt e e e e e e et re e e e e e e e e e e e s aaatabaaeaeaaaeeesessnsssrseaeees 64
Ordnance SUrvey Vectormap DiSTIICT ...ttt e e e e e e e et e e e e e e e e e e e e saattabaaeeeaaaeeeeessnssssasaeees 66
OrdNance SUIVEY IMAStEIIMIAP........uuuiiiiiiiiie e e e eeccciitieee et e e e e e e e sseetbaraeeeeaaaeeesaaa s stasaaaaeaaaeeseasasstssassaaasaseesessasssrsssneens 67
Yo o1 Te [USSR 68
plpgSQL function code for ws2_build_0d_table........cci i 68
plpgSQL function code for ws2_nearest_feature to CeNtroidcccccccoeeeciiiiiiiiiiee e e 73
plpgSQL function code for ws2_nearest_feature_to_centroid _in_ZONEeccccceeeeeieeciiiiiiiiieeee e, 76
plpgSQL function code for ws2_all_features iN_ZONEcccuuiiiiiiiie it e e e e e ee e 79
plpgSQL function code for ws2_nearest_feature_to_centroid_in_out_zone_table.........cccccceeeeiiiiniiicninnnnnnen. 81

SQL Code and Django links to create Population CDAM value tables: ..., 84

SQL Code to create Economics CDAM Value tables:c.uiiiiiiiiiiiiiie e e 85

SQL Code for foreign key constraints on European Environment Agency Waste Water Dataccccceveeeeennn. 89
plpgSQL function code for extracting country-specific routes from openflights data.........ccccceeeiiiiiiiccininnnnnn. 91

plpgSQL function code for calculate_ GOR_centroid_to_boundary_distance for solid waste CDAM 94

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

List of Figures

Figure 1 - itrc_census database data processing steps. Contains CENSUS Journey To Work Data for 2001................. 15
Figure 2 - processing steps undertaken to create tables to store economics CDAM constants.......ccccceeeeeeeeecnrvnvneneenn. 18
Figure 3 - processing steps undertaken to create tables to store demographics CDAM constants.........ccceeecuvvvvveneen. 20
Figure 4 - GeoHack coordinate information available via Wikipedia, for Aberthaw Power Station.............cccccuvvvveeeen. 22
Figure 5 - GeoHack coordinate information available via Wikipedia, for Little Barford Power Station 24
Figure 6 - distribution lines highlighted in cyan, as polylines in dXf ... 25
Figure 7 - substations highlighted in cyan, as polygons Within dXf.........cccccceiiiiiiiiiiiii e, 26
Figure 8 - names of substations from Annotation feature type highlighted in cyan..........cccooiiiiiiiieei e, 26
Figure 9 - processing steps to create and load data to the energy section of the database........cccccceveeeiiiiiiiiinninnn.n. 35
Figure 10 - processing and upload procedure for data within the itrc hazards database...........cccooveeeeeiiiiieccciniienenn. 37
Figure 11 - processing and upload procedure for data within the itrc water databasecccccoviviveeeeeiiiieccccciiiieee, 40
Figure 12 - processing and upload procedures for waste wWater dataccccceeeeeeeciiiiiiiiieee e e 45

Figure 13 - National Grid Letter Mapping

(http://www.ordnancesurvey.co.uk/oswebsite/gi/nationalgrid/nationalgrid.pdf)ccccoeiiiiiiiiiiieeiie e, 48
Figure 14 - processing and upload procedures for solid waste data.......ccccceeeeeeiiiiiiiiiiiiee e 50
Figure 15 - processing for derived data to calculate distances for WS1 Solid Waste CDAM.........cccceeeeeeeeeeeeeccvvnnrenennn. 53
Figure 16 - processing and upload procedures for transport data......cccccceeeeeeeeccciiiiiiieee e e eee s 63

Figure 17 - processing and upload procedures for Ordnance Survey Points of Interest data (North West coverage

Figure 18 - processing and upload procedure for Ordnance Survey Vectormap District data.......ccccceeeeeeeeeiiccivnnennenn. 66
Figure 19 - processing and upload procedure overview for North West coverage of Ordnance Survey MasterMap

Figure 20 - plpgSQL function code to build an origin-destination table, creating an output table containing both the
origin zone and origin feature, as well as the destination zone and the destination feature..........ccccoeeeciiiieeeeeneennnn. 72
Figure 21 - plpgSQL function code to calculate nearest feature to a zone centroid, whether inside or outside the
feature is inside or outside the IVEN ZONE EOMELIY ...uuiiiii i it e e e e e e e e rr e e e e e e e e e e e e e anaasraaaeees 75
Figure 22 - plpgSQL function code to calculate the nearest feature to the centroid of each zone, that lies within that

Figure 23 - plpgSQL function to create a table of all features within each zone........ccccceeieiiiiiciiiiec e, 80
Figure 24 - plpgSQL function to create a table of nearest feature to a zone centroid, beginning by selecting the

nearest feature within a zone, then if no features exist within that zone, finding the nearest.........ccccccvveeeeeeiieiccnnns 83
Figure 25 - value table definitions for population CDAMcooiiiiiiiiiee e e e r e e e e e e e e e e earrraaaeeeas 84
Figure 26 - value table definitions for econNomMICS CDAMcoiiiiiiiiiiiiieeee et e e e e e e e e e et rre e e e e e e e e e e e esaasrraaaeeeas 88
Figure 27 - plpgSQL function code to extract country-specific flight routes from openflights datacccccuvvnneee.n. 93

Figure 28 - plpgSQL function code to calculate average straight line distance between output area centroid and
centroid of government office region with which the output area resides.cccccceeeee i, 94

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

Software employed during processing:

Proprietary
1. Adobe lllustrator
2. Safe Software FME Desktop 2011 SP2
* Commonly-used feature type readers/writers
(http://fmepedia.safe.com/articles/Documentation_del/FME-Readers-and-Writers)
CSV - http://docs.safe.com/fme/reader_writerPDF/csv.pdf
Microsoft Excel - http://docs.safe.com/fme/reader writerPDF/xIs_ado.pdf

Microsoft Access - http://docs.safe.com/fme/reader writerPDF/mdb_ado.pdf
ESRI Shapefile - http://docs.safe.com/fme/reader writerPDF/shape.pdf
PostgreSQL - http://docs.safe.com/fme/reader writerPDF/postgres.pdf
PostGIS - http://docs.safe.com/fme/reader writerPDF/postgis.pdf

o GML (0OS MasterMap) - http://docs.safe.com/fme/reader_writerPDF/gml2.pdf
3. ESRI ArcGIS (ArcMap, ArcToolbox), Version 10, Service Pack 4

* Analysis Tools

O O O O O

o Extract
= Clip-
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Clip/000800000004000
000/

¢ Data Management Tools
o Features

= Feature To Point -
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#//00170000003m00000
0

= Feature Vertices To Points -
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Feature Vertices To P
0ints/00170000003p000000/

= Multipart To Singlepart -

http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Multipart To_Singlepar
t/00170000003r000000/

= Split Line At Point -
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Split_Line At Point/00
170000003w000000/

= Split Line At Vertices -
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Split_Line At Vertices/

00170000003z000000/
o General
= Merge-
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Merge/0017000000550
00000/

o Generalization
= Dissolve -
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Dissolve/00170000005
n000000/

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

o Projections and Transformations

= Feature
* Project-
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Project/001700
00007m000000/

= Define Projection -
http://help.arcgis.com/en/arcgisdesktop/10.0/help/index.html#/Define_Projection/001
700000077000000/

Open Source
* PostgreSQL 9.03, PostGIS 1.5, pgAdmin 1.12.x
o PostGIS Shp and DBF Loader (Revision: 5983)
* PL/PGSQL — procedural language
o Custom functions used:

= ws2_all_features_in_zone — calculates using ST_Intersects all features that lie within
each zone boundary supplied

= ws2_nearest_feature_to_centroid_in_zone — calculates the nearest feature to the
centroid of each zone, for only features that lie within that zone

= ws2_nearest_feature_to_centroid — calculates the nearest feature to the centroid of
each zone, regardless of whether that centroid lies within that zone or not.

= ws2_nearest_feature_to_centroid_in_out_zone_table — calculates the nearest feature
to the centroid of each zone, beginning by matching the nearest feature to each zone
centroid that lies within that zone, and then finding the nearest feature if no features lie
within the zone.

= ws2_build_od_table — builds a table of origin and destination zones and features to use
as origin or destination features when trying to consider start and end of a shortest path
calculation.

= subset_openflights_routes_by_country — subsets openflights routes data based on
input set of airports, and returns only those flights beginning and ending at airports
specified in the input set

= calculate_GOR_centroid_to_boundary_distance — creates a table containing the
average straight line distance between an output area centroid and all vertices that
comprise the boundary of the government office region within which the output area
resides.

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

Common input data formats:
Below are listed some of the common data formats used to store data that has been loaded in to the database.
Alongside each format is a link to either a specification for that format, or simply further information about that

particular format.

* ESRI Shapefile - http://www.esri.com/library/whitepapers/pdfs/shapefile.pdf

* Microsoft Access Database - http://office.microsoft.com/en-gb/access-help/access-2010-specifications-
HA010341462.aspx

* Microsoft Excel Spreadsheet - http://office.microsoft.com/en-gb/excel-help/excel-specifications-and-
limits-HP005199291.aspx

* Comma separated files (.csv) — http://en.wikipedia.org/wiki/Comma-separated values

* Geographic Markup Language (GML) - http://www.opengeospatial.org/standards/gml|

* Keyhole MarkUp Language (KML) - https://developers.google.com/kml/

ITRC

Data processing and uploading

Itrc_census

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

JTW_Bicycle 2001, JTW_Bus_2001,
JTW_CarPool_Northern_lIreland_Only 2001,
JTW_Car_Driver_2001,
JTW_Car_Passenger_2001,
JTW_Motorcycle_2001, JTW_OnFoot_2001,
JTW_Other_2001, JTW_Taxi_2001,
JTW_Total_2001, JTW_Train_2001,
JTW_Underground_England_Wales_Only_2001
, JTW_WorkStudyAtHome_2001

1) Create a new Microsoft Excel Spreadsheet document

2) Import each Journey To Work csv file to the new document
from 1) creating a separate worksheet per mode e.g. bicycle, bus,
train.

3) Create a blank workspace in Safe Software, Feature
Manipulation Engine (FME).

4) Load each worksheet as a separate import feature type, via a
Microsoft Excel feature reader.

5) Create a postgresql feature type writer, to write each
worksheet out to the itrc_census database as a separate table.

6) Create a feature type per transport mode, asking FME to
interpret and copy the column names and associated data types
to the output feature type writers.

7) Link the input and output feature type readers and writers. The
output feature attributes should all turn “green” if they are able to

accept the input data types.

The final result is a separate Postgres table per transport mode.

WICID_JTW_2001_Interaction_Data_Districts

1) Load the district geometry data for England and Wales only,
supplied by Nick Malleson alongside demographic projections,
using the PostGIS shapefile and DBF Loader — results in table
called districts

2) Load the boundary geometry for the Scottish Council Areas for
2001, using the PostGIS shapefile and DBF Loader —results in a
table called scotland_ca_2001

3) Load the boundary geometry for the Welsh Unitary Authorities
for 2001, using the PostGIS shapefile and DBF Loader — results in a
table called wales_ua_2001

4) Load the table
England_districts_scotland ca_2001 wales_ua_2001_centroids_ft
p using PostGIS shapefile and DBF Loader. This table contains
geometry of centroids of districts calculated using ESRI ArcGIS
Feature To Point tool.

4) UNION the three tables, districts, Scotland_ca_2001,
Wales_ua_2001 to create a table containing all the boundary
geometry data called
england_districts_scotland_ca_2001_wales_ua_2001

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

This table should contain 408 rows
5) RUN SQL:

CREATE TABLE "WICID_JTW_2001_Interaction_Data_Districts" AS SELECT code as

“ZoneCode”, “name” AS “ZoneName”, geom AS geom FROM
england_districts_scotland_ca_2001_wales_ua_2001

This will result in a table containing the correct Journey To Work
Origin-Destination districts for England, Wales, Scotland.

6) RUN SQL:

ALTER TABLE "WICID_JTW_2001_Interaction_Data_Districts" ADD COLUMN
centroid_geom geometry;

ALTER TABLE "WICID_JTW_2001_Interaction_Data_Districts" ADD COLUMN
ftp_geom geometry;

7) RUN sQL:

--set the geometry of the interaction districts to be the same as the combination
of england/scotland/wales districts

UPDATE "WICID_JTW_2001_Interaction_Data_Districts" SET geom =
england_districts_scotland_ca_2001_wales_ua_2001.geom FROM
england_districts_scotland_ca_2001_wales_ua_2001 WHERE
england_districts_scotland_ca_2001_wales_ua_2001.code =
"WICID_JTW_2001_Interaction_Data_Districts"."ZoneCode";

--set the ftp_geom of the interaction districts to be the same as the centroids
calculated from ArcGIS Feature To Point on
england_districts_scotland_ca_2001_wales_ua_2001

UPDATE "WICID_JTW_2001_Interaction_Data_Districts" SET ftp_geom =
england_districts_scotland_ca_2001_wales_ua_2001_centroids_ftp.geom FROM
england_districts_scotland_ca_2001_wales_ua_2001_centroids_ftp WHERE
england_districts_scotland_ca_2001_wales_ua_2001_centroids_ftp.code =
"WICID_JTW_2001_Interaction_Data_Districts"."ZoneCode";

--set the centroid_geom of the interaction districts to be calculated via
ST_Centroid on the geometry of the districts i.e. NOT USING THE FEATURE TO
POINT CONVERSION OF ARCGIS

UPDATE "WICID_JTW_2001_Interaction_Data_Districts" SET centroid_geom =
ST_Centroid(england_districts_scotland_ca_2001_wales_ua_2001.geom) FROM
england_districts_scotland_ca_2001_wales_ua_2001 WHERE
england_districts_scotland_ca_2001_wales_ua_2001.geom IS NOT NULL AND
england_districts_scotland_ca_2001_wales_ua_2001.code =
"WICID_JTW_2001_Interaction_Data_Districts"."ZoneCode";

The result is a table containing the correct geometry fot the
Journey To Work Origin — Destination Zones, and their centroids.

os_meridian_2_ stations_per_district_st_centro
id

1) Ordnance Survey Meridian 2 Stations (station_point.shp)
shapefile uploaded to itrc_census database, via PostGIS Shapefile
and DBF Loader.

2) Execute plpgsql function ws2_all_features_in_zone :

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

SELECT * FROM
ws2_all_features_in_zone('WICID_JTW_2001_Interaction_Data_Districts',
'geom’, 'centroid_geom’, 'ZoneCode', 'os_meridian_2_old_station_point', 'geom’,
'name’, 27700, 'os_meridian_2_stations_per_district_st_centroid');

Result is a table of OS Meridian 2 Railway Stations within each
district, using the ST_Intersects PostGIS function.

Attributes include:

“id” — serial type (unique), generated by function
ws2_all_features_in_zone

“name” — railway station name

“ZoneCode” — unique identifier for each district e.g. 00AA
Distance — straight line distance between railway station and
district centroid, calculated using PostGIS function ST_Distance
Feature_geom — POINT geometry of railway station
Zone_boundary_geom — POLYGON geometry of district boundary
Zone_centroid_geom — POINT geometry of district geometry
centroid, calculated in this case using ST_Centroid PostGIS
function

os_meridian_2_stations_per_district_ftp

1) Ordnance Survey Meridian 2 Stations (station_point.shp)
shapefile uploaded to itrc_census database, via PostGIS Shapefile
and DBF Loader.

2) Execute plpgsql function ws2_all_features_in_zone :

SELECT * FROM
ws2_all_features_in_zone('WICID_JTW_2001_Interaction_Data_Districts',
'geom’, 'ftp_geom’, 'ZoneCode', 'os_meridian_2_old_station_point', 'geom’,
'name’, 27700, 'os_meridian_2_stations_per_district_ftp');

Result is a table of OS Meridian 2 Railway Stations within each
district, using the ST_Intersects PostGIS function.

Attributes include:

“id” — serial type (unique), generated by function
ws2_all_features_in_zone

“name” — OS Meridian 2 Railway Station name

“ZoneCode” — unique identifier for each district e.g. 00AA
Distance — straight line distance between railway station and
district centroid, calculated using PostGIS function ST_Distance
Feature_geom — POINT geometry of railway station
Zone_boundary_geom — POLYGON geometry of district boundary
Zone_centroid_geom — POINT geometry of district geometry
centroid, calculated in this case using ESRI ArcGIS Tool Feature To
Point

Nearest_station_district_centroid_all_stations_
ftp

1) RUN sQL:

SELECT * FROM

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

ws2_nearest_feature_to_centroid("WICID_JTW_2001_Interaction_Data_Districts
', 'ftp_geom', 'ZoneCode', 'os_meridian_2_old_station_point', 'geom’, 'name’,
27700, 'nearest_station_district_centroid_all_stations_ftp');

The result is a table containing the nearest Ordnance Survey
Meridian 2 Railway Station to each district centroid, for all
stations, whether inside the chosen district or not.

Attributes include:

“id” — serial type (unique), generated by function
ws2_nearest_feature_to_centroid

“name” — OS Meridian 2 Railway Station name

“ZoneCode” — unique identifier for each district e.g. 00AA
Distance — straight line distance between railway station and
district centroid (previously calculated using ESRI ArcGIS Feature
To Point Tool)

Feature_geom — OS Meridian 2 Railway Station geometry
Centroid_geom — Centroid geometry of each district
Nearest_feature_to_centroid_line_geom — Straight line geometry
representing link between district centroid and nearest railway
station.

Nearest_station_district_centroid_all_stations_
st_cent

1) RUN sQL:

SELECT * FROM
ws2_nearest_feature_to_centroid("WICID_JTW_2001_Interaction_Data_Districts
', 'centroid_geom’, 'ZoneCode', 'os_meridian_2_old_station_point', 'geom’,
'name’, 27700, 'nearest_station_district_centroid_all_stations_st_cent');

The result is a table containing the nearest Ordnance Survey
Meridian 2 Railway Station to each district centroid, for all
stations, whether inside the chosen district or not.

Attributes include:

“id” — serial type (unique), generated by function
ws2_nearest_feature_to_centroid

“name” — OS Meridian 2 Railway Station name

“ZoneCode” — unique identifier for each district e.g. 00AA
Distance — straight line distance between railway station and
district centroid (previously calculated using ST_Centroid PostGIS
function)

Feature_geom — OS Meridian 2 Railway Station geometry
Centroid_geom — Centroid geometry of each district
Nearest_feature_to_centroid_line_geom — Straight line geometry
representing link between district centroid and nearest railway
station.

Nearest_station_district_centroid_in_districts_
ftp

1) RUN sQL:

SELECT * FROM
ws2_nearest_feature_to_centroid_in_zone('os_meridian_2_stations_per_district
_ftp', 'feature_geom', 'zone_centroid_geom’, 'name’, 'ZoneCode', 27700,

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

'nearest_station_district_centroid_in_districts_ftp');

The result is a table containing the nearest Ordnance Survey
Meridian 2 Railway Station to each district centroid, for all
stations, that lie inside that district.

Note: centroids within the
'os_meridian_2_stations_per_district_ftp’ table were calculated
using the ESRI ArcGIS Feature To Point Tool.

Attributes include:

“id” — serial type (unique), generated by function
ws2_nearest_feature_to_centroid_in_zone

“name” — OS Meridian 2 Railway Station name

“ZoneCode” — unique identifier for each district e.g. 00AA
Distance — straight line distance between railway station and
district centroid (previously calculated using ST_Centroid PostGIS
function)

Feature_geom — OS Meridian 2 Railway Station geometry
Centroid_geom — Centroid geometry of each district
Nearest_feature_to_centroid_line_geom — Straight line geometry
representing link between district centroid and nearest railway
station.

Nearest_station_district_centroid_in_districts_
st_cent

1) RUN sQL:

SELECT * FROM
ws2_nearest_feature_to_centroid_in_zone('os_meridian_2_stations_per_district
_st_centroid', 'feature_geom', 'zone_centroid_geom', 'name’, 'ZoneCode', 27700,
'nearest_station_district_centroid_in_districts_st_cent');

The result is a table containing the nearest Ordnance Survey
Meridian 2 Railway Station to each district centroid, for all
stations, that lie inside that district.

Note: centroids within the
'os_meridian_2_stations_per_district_st_cent’ table were
calculated using the PostGIS ST_Centroid function.

Attributes include:

“id” — serial type (unique), generated by function
ws2_nearest_feature_to_centroid_in_zone

“name” — OS Meridian 2 Railway Station name

“ZoneCode” — unique identifier for each district e.g. 00AA
Distance — straight line distance between railway station and
district centroid (previously calculated using ST_Centroid PostGIS
function)

Feature_geom — OS Meridian 2 Railway Station geometry
Centroid_geom — Centroid geometry of each district
Nearest_feature_to_centroid_line_geom — Straight line geometry
representing link between district centroid and nearest railway

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

station.

nearest_station_to_district_centroid_in_out_di
stricts_st_cent

1) RUN sQL:

SELECT * FROM
ws2_nearest_feature_to_centroid_in_out_zone_table('os_meridian_2_stations_
per_district_st_centroid’, 'feature_geom’, 'zone_centroid_geom’, 'name’,
'ZoneCode', 'WICID_JTW_2001_Interaction_Data_Districts’,
'os_meridian_2_old_station_point', 27700,
'nearest_station_to_district_centroid_in_out_districts_st_cent');

The result is a table containing the nearest Ordnance Survey
Meridian 2 Railway Station to each district centroid, for all
stations, by matching the nearest station to each zone centroid
that lies within that zones boundary. In the event that a zone does
not contain a station, then the nearest station outside the zone is
selected.

Attributes include:

“id” — serial type (unique), generated by function
ws2_nearest_feature_to_centroid_in_out_zone_table

“name” — OS Meridian 2 Railway Station name

“ZoneCode” — unique identifier for each district e.g. 00AA
Distance — straight line distance between railway station and
district centroid (previously calculated using ST_Centroid PostGIS
function)

Feature_geom — OS Meridian 2 Railway Station geometry
Centroid_geom — Centroid geometry of each district
Nearest_feature_to_centroid_line_geom — geometry of straight
line between feature_geom and centroid_geom

nearest_station_to_district_centroid_in_out_di
stricts_ftp

1) RUN sQL:

SELECT * FROM
ws2_nearest_feature_to_centroid_in_out_zone_table('os_meridian_2_stations_
per_district_ftp', 'feature_geom’, 'zone_centroid_geom’, 'name’, 'ZoneCode',
'WICID_JTW_2001_Interaction_Data_Districts',
'os_meridian_2_old_station_point', 27700,
'nearest_station_to_district_centroid_in_out_districts_ftp');

The result is a table containing the nearest Ordnance Survey
Meridian 2 Railway Station to each district centroid, for all
stations, by matching the nearest station to each zone centroid
that lies within that zones boundary. In the event that a zone does
not contain a station, then the nearest station outside the zone is
selected.

Attributes include:

“id” — serial type (unique), generated by function
ws2_nearest_feature_to_centroid_in_out_zone_table
“name” — OS Meridian 2 Railway Station name
“ZoneCode” — unique identifier for each district e.g. 00AA

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Distance — straight line distance between railway station and
district centroid (previously calculated using ST_Centroid PostGIS
function)

Feature_geom — OS Meridian 2 Railway Station geometry
Centroid_geom — Centroid geometry of each district
Nearest_feature_to_centroid_line_geom — geometry of straight
line between feature_geom and centroid_geom

JTW _Interaction_Districts_2001_0S_0S_Meridi
an_2_Stations

1) RUN sQL:

SELECT * FROM
ws2_build_od_table('WICID_JTW_2001_Interaction_Data_Districts',
'nearest_station_district_centroid_in_districts_st_cent', JTW_Train_2001"',
27700, 'JTW_Interaction_Districts_2001_0OD_OS_Meridian_2_Stations')

The result is a table containing the origin and destination districts,
with the respective stations to use as the corresponding origin and
destination stations.

Attributes include:

“id” — serial type (unique), generated by function
ws2_build_od_table

“Origin_Feature_Name” — name of OS Meridian 2 Rail Station
nearest to centroid of Origin district centroid
“Origin_Zone_Name” — name of origin district
“Origin_Zone_Code” — unique code of origin district
“Origin_Feature_To_Zone_Centroid_Distance” — distance
between “Origin_Feature_geom” and “Origin_Zone_geom”
centroid

“Destination_Feature_Name” — name of OS Meridian 2 Rail
Station nearest to centroid of Destination district centroid
“Destination_Zone_Name” — name of destination district
“Destination_Zone_Code” — unique code of destination district
“Destination_Feature_To_Zone_Centroid_Distance” — distance
between “Destination_Feature_geom” and
“Destination_Zone_geom” centroid

“Origin_Feature_geom” — geometry of OS Meridian 2 Rail Station
in origin district

“Origin_Zone_geom” — centroid geometry of origin district
“Origin_Feature_To_Zone_Centroid_geom” — line geometry
linking OS Meridian 2 Railway Station and origin district centroid
“Destination_Feature_geom” — geometry of OS Meridian 2 Rail
Station in destination district

“Destination_Zone_geom” — centroid of destination district
“Destination_Feature_To_Zone_Centroid_geom” — line geometry
linking OS Meridian 2 Railway Station and destination district
centroid

“JTW_Count” — number of passengers travelling between
“Origin_Zone_Code”/”Origin_Zone_Name” starting at station
“Origin_Feature_name” and
“Destination_Zone_Code”/”Destination_Zone_name” finishing at
station “Destination_Feature_name”

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

e.g.

"Cannon Street (London)";

"City of London";

"00AA";

414.318684017;

"Cannon Street (London)";

"City of London";

"00AA";

414.318684017;
"0101000020346C000000000000F440204100000000E8120641";
"0101000020346C000086BFA026E03F2041CD942C801D1F0641";
"0102000020346C00000200000086BFA026E03F2041CD942C801D
1F064100000000F440204100000000E8120641";
"0101000020346C000000000000F440204100000000E8120641";
"0101000020346C000086BFA026E03F2041CD942C801D1F0641";
"0102000020346C00000200000086BFA026E03F2041CD942C801D
1F064100000000F440204100000000E8120641";

53

ONS 2001 boundaries:

LSOA_2001_EW_BFC
LSOA_2001_EW_BFE
LSOA_2001_EW_BGC
LSOA_2001_EW_BGE
MSOA_2001_EW_BFC
MSOA_2001_EW_BFE
MSOA_2001_EW_BGC
MSOA_2001_EW_BGE
OA_2001_EW_BFC
OA_2001_EW_BGE
OA_2001_EW_BGC

ONS 2011 boundaries:

LSOA_2011_EW_BFC
LSOA_2011_EW_BFE
LSOA_2011_EW_BGC
LSOA_2011_EW_PWC
MSOA_2011_EW_BFC
MSOA_2011_EW_BFE
MSOA_2011_EW_BGC
MSOA_2011_EW_PWC
OA_2011_EW_BFC
OA_2011_EW_BFE
OA_2011_EW_BGC
OA_2011_EW_PWC

Each of the 2001, and 2011 census output area boundaries were
supplied as ESRI shapefiles.

Each file was uploaded to the census database using the PostGIS
SHP and DBF Loader plugin.

Prefix meaning:

LSOA = lower layer output area
MSOA = middle layer output area
OA = output area

Suffix meaning:

_BFC = full resolution, clipped to coastline

_BFE = full resolution, clipped to extent of realm
_BGC = generalised (20m), clipped to coastline

_BGE = generalised (20m), clipped to extent of realm
_PWC = population weighted centroid

No processing was performed on this data prior to it being
uploaded to the database.

ONS 2001 boundary centroids:

Each centroid table for the ONS 2001 and 2011 boundaries was

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

LSOA_2001_EW_BFC_ST_Centroid
LSOA_2001_EW_BFE_ST_Centroid
LSOA_2001_EW_BGC_ST_Centroid
LSOA_2001_EW_BGE_ST_Centroid
MSOA_2001_EW_BFC_ST_Centroid
MSOA_2001_EW_BFE_ST_Centroid
MSOA_2001_EW_BGC_ST_Centroid
MSOA_2001_EW_BGE_ST_Centroid
OA_2001_EW_BFC_ST_Centroid
OA_2001_EW_BGE_ST_Centroid
OA_2001_EW_BGC_ST_Centroid

ONS 2011 boundary centroids:

LSOA_2011_EW_BFC_ST_Centroid
LSOA_2011_EW_BFE_ST_Centroid
LSOA_2011_EW_BGC_ST_Centroid
MSOA_2011_EW_BFC_ST_Centroid
MSOA_2011_EW_BFE_ST_Centroid
MSOA_2011_EW_BGC_ST_Centroid
OA_2011_EW_BFC_ST_Centroid

OA 2011 _EW_BFE_ST Centroid
OA_2011_EW_BGC_ST_Centroid

calculated using the ST_Centroid function of PostGIS e.g.

DROP TABLE IF EXISTS "LSOA_2001_EW_BFC_ST_Centroids";

CREATE TABLE "LSOA_2001_EW_BFC_ST_Centroids" AS SELECT gid, Isoa0Olcd,
Isoa01nm, ST_Centroid(geom) FROM "LSOA_2001_EW_BFC";

ALTER TABLE "LSOA_2001_EW_BFC_ST_Centroids" ADD CONSTRAINT
enforce_dims_geom CHECK (st_ndims(geom) = 2);

ALTER TABLE "LSOA_2001_EW_BFC_ST_Centroids" ADD CONSTRAINT
enforce_geotype_geom CHECK (geometrytype(geom) = 'POINT'::text OR geom IS
NULL);

ALTER TABLE "LSOA_2001_EW_BFC_ST_Centroids" ADD CONSTRAINT
enforce_srid_geom CHECK (st_srid(geom) = 27700);

This SQL was executed for each boundary set.

OA01_OA11_EW_LU
MSOAO1_MSOA11_EW_LUv2
LSOAO1_LSOA11_EW_LUv2

OA11_LSOA11_MSOA11l_LAD11_EW_LUv2

OA11_RGN11_EN_LU
OA11_CTY11_EN_LU
OA11_CTRY11_EW_LU

The ONS lookup tables were supplied as individual csv files for
each output level (output area, lower layer and middle layer)

FME Workbench was used to upload this data. A CSV feature type
reader was used to read each file, whilst a Postgres feature type
writer was used to write each input file to a separate table.

Figure 1 - itrc_census database data processing steps. Contains CENSUS Journey To Work Data for 2001

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

Itrc_economics

Table prefix/table name Process Description

uk_investing_sectors 1) RUN the following SQL to create a table “uk_investing_sectors”.

CREATE TABLE uk_investing_sectors (uk_investing_sector_id double precision,
uk_investing_sector_name character varying(50)) WITH (OIDS = FALSE);

ALTER TABLE uk_investing_sectors OWNER TO postgres;

2) RUN the following SQL to populate the “uk_investing_sectors”
table (values missing here, contact David.Alderson@ncl.ac.uk or
Chris Thoung (ct@camecon.com) for further details)

INSERT INTO uk_investing_sectors (uk_investing_sector_id,
uk_investing_sector_name) VALUES (1, "1 Agriculture etc");

INSERT INTO uk_investing_sectors (uk_investing_sector_id,
uk_investing_sector_name) VALUES (28, "28 Unallocated");

NOTE: This table stores the uk investing sectors related to the
economics CDAM model produced by Cambridge Econometrics,
related to the “UK Investment” variable.

sectors 1) RUN the following SQL to create a table “sectors” (values
missing here, contact David.Alderson@ncl.ac.uk or Chris Thoung
(ct@camecon.com) for further details)

CREATE TABLE sectors (sector_id serial PRIMARY KEY, sector_name character
varying (30)) WITH (OIDS = FALSE);

ALTER TABLE sectors OWNER TO postgres;

2) RUN the following SQL to populate “sectors” table.

INSERT INTO sectors (sector_name) VALUES ("Agriculture etc");

INSERT INTO sectors(sector_name) VALUES ("Unallocated");

NOTE: This table stores the sectors related to the economics
CDAM model produced by Cambridge Econometrics, relates to the
following variables:

* UK Industry Exports

* UK Industry Imports

¢ UK Industry Expenditure

* UK Industry Output Prices

* Employment

* GVA

regional_investing_sector 1) RUN the following SQL to create a table
“regional_investing_sector” (values missing here, contact
David.Alderson@ncl.ac.uk or Chris Thoung (ct@camecon.com) for

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

further details)

CREATE TABLE regional_investing_sector(regional_investing_sector double
precision, regional_investing_sector_name character varying(50)) WITH (OIDS =
FALSE);

ALTER TABLE regional_investing_sector OWNER TO postgres;

2) RUN the following SQL to populate “regional_investing_sector”.

INSERT INTO regional_investing_sector(1, "1 Agriculture etc")

INSERT INTO regional_investing_sector(16, "16 Unallocated")

Fuel _users

1) RUN the following SQL to create a table “fuel_users” (values
missing here, contact David.Alderson@ncl.ac.uk or Chris Thoung
(ct@camecon.com) for further details)

CREATE TABLE fuel_users (fuel_user_id serial PRIMARY KEY, fuel_user_name
character varying (50)) WITH (OIDS=FALSE);

ALTER TABLE fuel_users OWNER TO postgres;

2) RUN the following SQL to populate “fuel_users”

INSERT INTO fuel_users (fuel_user_name) VALUES (“1 Power generation")

INSERT INTO fuel_users(fuel_user_name) VALUES ("25 Miscellaneous")

NOTE: This table stores the fuel user categories related to the
economics CDAM model produced by Cambridge Econometrics,
related to the following variables:

e UK CO,Emissions
* UK GHG Emissions
* Energy

consumption_categories

1) RUN the following SQL to create a table
“consumption_categories” (values missing here, contact
David.Alderson@ncl.ac.uk or Chris Thoung (ct@camecon.com) for
further details)

CREATE TABLE consumption_categories(consumption_category_id double
precision, consumption_category_name character varying(50)) WITH
(OIDS=FALSE);

ALTER TABLE consumption_categories OWNER TO postgres;
2) RUN the following SQL to populate “consumption_categories”

INSERT INTO consumption_categories(1, "1 Food")

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

INSERT INTO consumption_categories(52, “52 Unallocated”)
NOTE: This tables stores the consumption categories related to
the economics CDAM model produced by Cambridge

Econometrics, relates to the following variables:

* UK Household Expenditure

government_office_regions

1) Download English Government Office Regions ESRI Shapefile
from Share-Geo or UKBORDERS

2) Download the Scottish Country Outline ESRI Shapefile from
UKBORDERS

3) Download the Wales Country OQutline ESRI Shapefile from
UKBORDERS

4) Open ESRI ArcGIS ArcMap

5) Load the English Government Office Region, Scottish and Wales
Country Outlines into ArcMap

6) Open ArcToolbox, and select:
Data Management Tools -> General -> Merge

7) Select each loaded dataset, as an input to the Merge Tool.
Specify an output path, and name of
english_gor_merge_wales_scotland_border.shp.

8) Execute the ESRI ArcToolbox Merge Tool.

The result of the operation is an ESRI shapefile containing the
English Government Office Regions, merged with the Scottish and
Welsh Country Outlines.

9) Using the PostGIS Shp and DBF Loader plugin, upload the
government_office_regions shapefile to the itrc_economics
database.

NOTE: The results produced by the Cambridge Econometrics
Economic CDAM model are aggregated at the Government Office
Region Level.

Figure 2 - processing steps undertaken to create tables to store economics CDAM constants

ITRC

Itrc_population

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

districts

1) Download English Government Office Regions ESRI Shapefile
from Share-Geo or UKBORDERS

2) Using the PostGIS Shp and DBF Loader, load the districts table
in to the itrc_population database

NOTE: The results of running the demographics CDAM is
disaggregated at the district level.

The resultant table should contain 354 records (England and
Wales only)

districts_gor_union

1) RUN the following SQL to create a table containing all the
districts (354 records for England and Wales only) and also the
government office regions (11)

CREATE TABLE districts_gor_union AS SELECT code, “name”, geom FROM districts
UNION ALL

SELECT “name” as code, “name” as “name”, gecom FROM
government_office_regions

ALTER TABLE districts_gor_union OWNER TO postgres;

CREATE INDEX districts_gor_union_geom ON districts_gor_union
USING gist(geom)

government_office_regions

1) Download English Government Office Regions ESRI Shapefile
from Share-Geo or UKBORDERS

2) Download the Scottish Country Outline ESRI Shapefile from
UKBORDERS

3) Download the Wales Country Outline ESRI Shapefile from
UKBORDERS

4) Open ESRI ArcGIS ArcMap

5) Load the English Government Office Region, Scottish and Wales
Country Outlines into ArcMap

6) Open ArcToolbox, and select:

Data Management Tools -> General -> Merge

7) Select each loaded dataset, as an input to the Merge Tool.
Specify an output path, and name of

english_gor_merge_wales_scotland_border.shp.

8) Execute the ESRI ArcToolbox Merge Tool.

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

The result of the operation is an ESRI shapefile containing the
English Government Office Regions, merged with the Scottish and
Welsh Country Outlines.

9) Using the PostGIS Shp and DBF Loader plugin, upload the
government_office_regions shapefile to the itrc_population
database.

NOTE: Some of the results produced by the Demographics CDAM
model are aggregated at the Government Office Region Level.

Figure 3 - processing steps undertaken to create tables to store demographics CDAM constants

ITRC

Itrc_spatial_energy

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

AEP_CWIntakesAtNuclearAndOtherLargeUKPo
werStations1000MWe

The cold water intake at nuclear and other large (1000Mwe+) UK
power stations data was supplied in Appendix A, as part of the
Cooling Water Options for the New Generation of Nuclear Power
Stations in the UK report.

cdn.environment-agency.gov.uk/scho0610bsot-e-e.pdf

The data was copied to a csv file, where the column names were
mapped to something compatible with tables in a relational
database.

Name = Name

Fuel or Type = FuelOrType

Current Status = CurrentStatus

Installed Capacity Mwe = InstalledCapacity
Maximum CW flow m>s™ = MaxFlow
Cooling Water Source = CWSource

Intake Position = IntakePos

Moving Screens = Screen

Fish Protection or Return = FPR

Additional latitude and longitude columns were added to the csv
file, to store the coordinate information for each power station
site.

The corresponding location of each power station was found by
searching the internet in the following manner:

a) The company website, using the “Name” parameter. If a
location, or postcode was defined then this was used to
refine the location further.

b) If no useful location information could be found from the
company website, a simple search using the “Name” was
performed. If a response was returned from Wikipedia,
this was initially followed e.g.

- http://en.wikipedia.org/wiki/Aberthaw_power_statio
ns - result from “Name” search for “Aberthaw”

- http://toolserver.org/~geohack/geohack.php?pagena
me=Aberthaw power stations¶ms=51.387312
N -3.404866 E type:landmark — GeoHack location
link supplied with link above, giving WGS84 and UTM
coordinates e.g.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

GeoHack - Aberthaw power stations

WGS84 51°23'14.32"N, 3° 24'17.52"W
51.387312, -3.404866

utm 30U 471828 5692975

Zoom 8 Scale +1:10000

Region GB@& Type landmark

Title Aberthaw power stations & (edit & | report inaccuracies &)

Contents Global and Local services - Wikipedia articles - Photos - Other - Export @
Figure 4 - GeoHack coordinate information available via Wikipedia, for
Aberthaw Power Station

- The decimal values highlighted in RED, in the above
image denote those used as reference to the location
of a power station, and extracted to the csv document

c) Alternatively, if the first two options did not yield a
location, Google Maps was utilised to locate the power
station in question.

NOTE: The accuracy of the location of these power stations is
therefore questionable, as a result of the available data sources
giving reference to the location of a power station.

5) This same operation was performed for all power stations listed
in the original Appendix A document.

AEP_ClosuresPowerStationNuclearAGR

AEP_ClosuresPowerStationNuclearMagnox

AEP_ClosuresPowerStationsCoal

AEP_ClosuresPowerStationsOil

Data converted to separate .csv files from original pdf, found at:

www.aepuk.com/.../Power%20Station%20Closures%202025.pdf

Geographic coordinates of each station captured or copied using
method described for DECC_OperationalPowerStationsMay2011

CSV data loaded as separate files into ESRI ArcGIS ArcMap, with
the columns of Easting and Northing within each CSV file used as
the x and y coordinates within ArcMap.

Each subsequent file was then exported to a separate shapefile
e.g.

AEP_ClosuresPowerStationNuclearAGR.shp
AEP_ClosuresPowerStationNuclearMagnox.shp
AEP_ClosuresPowerStationsCoal.shp
AEP_ClosuresPowerStationsQil.shp

These files were then uploaded to the ITRC energy database using
the PostGIS Shp and DBF Loader plugin for PostgreSQL / PostGIS.

AEP_PlannedNewBuildPowerStationsCoal
AEP_PlannedNewBuildPowerStationsGas

Data converted to separate .csv files from original pdf, for coal
fuel and gas types only, found at:

www.berr.gov.uk/files/file49436.xls

Geographic coordinates of each coal station captured or copied

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

using the method described for
DECC_OperationalPowerStationsMay2011

Excel spreadsheet data loaded in to ESRI ArcGIS ArcMap, with the
columns of Easting and Northing used for coordinates.

Two shapefiles were then created as a result of exporting the data
from ArcMap e.g.

PlannedNewBuildPowerStationsCoal.shp
PlannedNewBuildPowerStationsGas.shp

These files were then uploaded to the ITRC energy database using
the PostGIS Shp and DBF Loader plugin for PostgreSQL / PostGIS.

DECC_OperationalPowerStationsMay2011

1) DUKES5_11.csv document created, containing reference to the
data of Power Stations in the United Kingdom (operational as of
end of May 2011).

Attributes include:

* Company Name

e Station Name

* Fuel

* Installed Capacity (MW)

* Year of commission or year generation began

* Location (one of Scotland, Wales, Northern Ireland,
England)

Original raw data found in table 5.11 at
http://www.decc.gov.uk/assets/decc/11/stats/publications/dukes
/2307-dukes-2011-chapter-5-electricity.pdf

2) The column names were mapped from the original raw data
(left) to the following names (right):

Company Name = co_name

Station Name = station_name

Fuel = fuel_type

Installed Capacity = capacity

Year of commission or year generation began = com_year
Location was ignored

3) Columns were added to the csv document for latitude and
longitude.

4) The corresponding location of each power station was found by
searching the internet in the following manner:

d) The company website, using the “Company Name”
parameter. If a location, or postcode was defined then
this was used to define the location further.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

e) If no useful location information could be found from the
company website, a simple search using the “Station
Name” was performed. If a response was returned from
Wikipedia, this was initially followed e.g.

- http://en.wikipedia.org/wiki/Little Barford Power St
ation - result from “Station Name” search for “Little
Barford”

- http://toolserver.org/~geohack/geohack.php?pagena
me-=Little Barford Power Station¶ms=52 12 16
N 0 16 8 W region:GB type:landmark — GeoHack
location link supplied with link above, giving WGS84
and UTM coordinates e.g.

GeoHack - Little Barford Power Station

WGS84 52°12'16"N,0° 168" W

52.204444,-0.268889
utm 30U 686619 5787293
Zoom 8 Scale +1:10000
Region GB® Type landmark
Title Little Barford Power Station & (edit& | report inaccuracies &)

Figure 5 - GeoHack coordinate information available via Wikipedia, for Little
Barford Power Station

- The decimal values highlighted in RED, in the above
image denote those used as reference to the location
of a power station, and extracted to the
DUKES5_11.csv document.

f) Alternatively, if the first two options did not yield a
location, Google Maps was utilised to locate the power
station in question.

NOTE: The accuracy of the location of these power stations is
therefore questionable, as a result of the available data sources
giving reference to the location of a power station.

5) This same operation was performed for all power stations listed
in the original DUKES document.

6) The subsequent .csv file was loaded in to ESRI ArcMap, and
converted to an ESRI Shapefile, along side all afore-mentioned
attributes.

7) The shapefile was converted to British National Grid
coordinates, using the ArcToolbox tool:

Data Management->Projections and Transformations->Feature-
>Project

8) The shapefile was subsequently uploaded to the
itrc_spatial_energy database using the PostGIS Shp and DBF
Loader.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

DECC_ListOfPotentialElectricityGeneratingCapa
city_UK

ENW_LTDS 2010 _132kV_geographic_expande
d rev2 7

ENW_LTDS 2010 33kV_Geographic_Lakes_3
ENW_LTDS 2010 33kV_Geographic_Lancs_3
ENW_LTDS 2010 _33kV_Geographic_South_3

NOTE: Initial Electricity North West data supplied as a series of 3
separate pdf documents, containing no geographic coordinate
information. These steps detail how each separate pdf was
converted to a georeferenced ESRI Shapefile:

PDF -> DXF

1) Open Adobe lllustrator.

2) Next select to filter only “Files of type: Adobe PDF (*.Al, *.AIT,
* PDF)”

3) Select the chosen PDF file e.g.
LTDS_2010_33kV_Geographic_Lakes.pdf

4) Once the file is open, click File->Export, and select the
“AutoCAD Interchange File (*.DXF)” format.

5) The result should be a .dxf file of the pdf input

DXF -> Non-georeferenced ESRI Shapefile (lines, polygons,
annotation)

1) Open ESRI ArcGIS ArcMAP

2) Click the Add Data button, and for a single dxf document, only
load the “Polygon”, “Polyline” and “Annotation” feature types.
Double click the main .dxf file to receive a list of feature types,
including Polygon and Polyline

3) From the Polyline data loaded, using “Select by Attributes”,
select only those with “Color = 3”. This should select only those
features that are actually ENW distribution lines from that file e.g.

Figure 6 - distribution lines highlighted in cyan, as polylines in dxf

4) Export this data to a separate ESRI Shapefile, labelled
accordingly.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

5) From the Polygon data loaded, again using “Select by
Attributes”, select only those with “LineWt” =5 AND “Color = 7”.
This should select all the polygons representing substations within
the network e.g.

Figure 7 - substations highlighted in cyan, as polygons within dxf

NOTE: Be careful that this selection has only selected the features
of interest, and that all other features remain unselected.

6) Export this data to a separate ESRI Shapefile, labelled
accordingly

7) From the Annotation data loaded, again using “Select by
Attributes”, select only those features with “Color = 7" e.g.

jotorway
Rosg
KV Netwerk

< froen e prmssin f

Figure 8 - s of tions from Annotation feature type highlighted in
cyan

NOTE: Be careful to subsequently inspect those selected features
and remove any selected features that are not features of
interest, or any duplicates. For example those selected within the
legend (see GREEN circle in figure.6)

Converting Substation Polygons to Points:

1) Open ESRI ArcGIS ArcMap
2) Load the Substations shapefile generated as part of the

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

previous steps into ArcMap
3) Open ArcToolbox and select:

Data Management Tools -> Features -> Feature To Point

4) Select the ESRI shapefile loaded in step 2, as the input to the
tool, and specify an appropriate output path and name

5) Execute the tool for each Substation shapefile generated from
the raw .dxf. The result should be a separate ESRI point shapefile
for each substation shapefile generated earlier.

The result of these various steps is a set of ESRI shapefiles that can
then be used in combination, alongside other data sources to
begin to georeference the network.

Add X/Y coordinates to each substation centroid file

1) Open ESRI ArcGIS ArcMap

2) For each substation centroid file generated in the previous
steps, a set of local, non-geographic coordinates need to be added
to the attribute table of each in order to then be able to adjust
these points to their true or near true geographic coordinates.

3) Open the attribute table and select “Add Field”, called “X” with
type float

4) Select “Add Field” called “Y”, with type float

5) Right click the newly-created “X” field and select “Calculate
Geometry”, selecting the “X Coordinate of geometry”

6) Right click the newly-created “Y” field and select “Calculate
Geometry”, selecting the “Y Coordinate of geometry”

Georeferencing the data

1) Open ESRI ArcGIS ArcMap

2) Load a single set of non-georeferenced substations, distribution
lines and annotation points, generated as part of the previous
steps

3) Load the Ordnance Survey 1:50k Gazetteer Shapefile.

The coordinates of the substations are retrieved by matching the
name of the substation against a record in the OS 1:50k Gazetteer
with the same name. For example:

Greenfield (ID, from_x, from_y, to_x, to_y):

Where from_x and from_y are local coordinates relative to the
pdf document within which the data resides, whereas to_x and
to_y are real world (British National Grid) coordinates.

15 567.119728 751.67876 399500 404500

4) The process of matching each substation name to a

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

corresponding name within the Gazetteer should be continued for
as many matches as possible. Each link file created is not only
used to transform the substations, but also the distribution lines
as well. It is sensible to save each of these links for each pdf within
a separate link file
(http://webhelp.esri.com/arcgisdesktop/9.3/index.cfm?TopicNam
e=Working with _link files and control point files — Creating
displacement links as a text file)

NOTE: this method is effectively using the OS 1:50k Gazetteer to
help georeference the ENW data. The coordinates taken from the
gazetteer refer to the geographic centre of a place, and therefore
by using these coordinates we are assuming that the substation of
the same name is also co-located at the same centre point — this is
obviously not always true, but this method represented the best
and quickest way to extract a spatial network from the input pdf.

5) Having created the respective link files, linking local pdf
coordinates to real-world geographic coordinates, the raw data
can be adjusted. For each pdf file, 3 files will need to be adjusted;
the substation points, the distribution lines, and finally the
annotation points. For each file a separate edit session will need
to be started. Using the Spatial Adjustment Toolbar in ArcMap:

- Set the Adjust Data to be “all features”
- Set the adjustment method to be affine transform

It is then possible to open the appropriate Links file created earlier
and perform the adjustment, by selecting Adjust.

The resultant output, georeferenced shapefiles, were then
uploaded to the itrc energy database using the plugin PostGIS Shp
and DBF Loader.

EHCS 2year_ weight_ 2007

EHCS actual_costs_0203_2003 —

EHCS actual_costs_06_and_07_2007

EHCS adapt_2003 — EHCS_adapt_2007

EHCS adaptation_2003 —
EHCS_adaptation_2005

EHCS_amenity_2003 — EHCS_amenity_2007
EHCS around_2003 — EHCS_around_2007
EHCS _around_physical_2006
EHCS_attitudes_2003 — EHCS_attitudes_2007
EHCS benefits_2003 — EHCS_benefits_2007
EHCS _chimney_ 2003 — EHCS_chimney_ 2007
EHCS_commac_2003 — EHCS_commac_2007
EHCS_common_2003 — EHCS_common_2007
EHCS_contact_2003 — EHCS_contact_2007
EHCS _damp_2003 — EHCS _damp_2007

EHCS _dampmould_0506_2006
EHCS_damppc_2003 — EHCS_damppc_2007

The English House Condition Survey data was supplied as a series
of tab delimited text files.

FME Workbench was used to convert this data to Postgres tables
within the database. A CSV Feature Type reader was used to read
each dataset, and then a Postgres Feature Type writer was used to
write the data to the database.

In general, a separate FME workspace was created for each
different year’s worth of data supplied.

The type and year of data was used to build each table name, and
therefore helps to distinguish each source directly.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

EHCS decent_2003

EHCS deregionalised costs_0203_2003 —
EHCS deregionalised costs_0607_2007
EHCS dimensions_0203 2003 —

EHCS dimensions_0607_2007
EHCS_dims_0203_2003 —
EHCS_dims_0607_2007
EHCS_disability_2003 — EHCS_disability_2007
EHCS doors_2003 — EHCS_doors_2007

EHCS dormers_2003 - EHCS_dormers_2007
EHCS elevate 2003 — EHCS elevate 2007
EHCS_employment_2003 —

EHCS _employment_2007

EHCS energy_performance_0506 2006 —
EHCS energy_performance_0607_2007
EHCS energydims_0203 2003 —

EHCS energydims_0607_2007

EHCS equivalised_income_0203_ 2003 -
EHCS_equivalised_income_0607_2007

EHCS firstimp_2003 — EHCS_firstimp_2007
EHCS firstimp_physical 2003 —

EHCS firstimp_physical 2007

EHCS_ fitness_2003 — EHCS_firstness_2007
EHCS flatdets 2003 — EHCS flatdets_2007
EHCS fuel poverty dataset 2003 -

EHCS fuel poverty dataset 2007

EHCS _hhsrs_2006 — EHCS_hhsrs_2007

EHCS hmodata_2003 — EHCS_hmodata_2007
EHCS_hqg_2003 — EHCS_hqg_2007
EHCS_income_2003 — EHCS_income_2007
EHCS_intenure_2003 — EHCS_intenure_2007
EHCS_interior_2003 — EHCS_interior_2007
EHCS_introoms_2003 — EHCS_introoms_2007
EHCS_modernisation_2003

EHCS_mvs_2003 — EHCS_mvs_2007

EHCS numflats_2003 — EHCS numflats_2007
EHCS people_2003 — EHCS people_2007
EHCS plotlvl 2003 — EHCS_plotlvl_2007
EHCS plotwall_2003 — EHCS_plotwall_2007
EHCS regionalised_comp_rcm_0203 2003
EHCS_repair_costs_0203_2003 -
EHCS_repair_costs_0405_2005
EHCS_repairs_2003 — EHCS_repairs_2007
EHCS_rootcov_2003 — EHCS_rootcov_2007
EHCS rooffeat_2003 — EHCS_rooffeat_2007
EHCS roofstru_2003 — EHCS_roofstru_2007
EHCS_rooms_2003 — EHCS_rooms_2007
EHCS_services_2003 — EHCS_services_2007
EHCS shared_2003 — EHCS_shared_2007
EHCS standardised_costs 0203 2003 —
EHCS_standardised_costs_0607_2007
EHCS_structure_2003 — EHCS_structure_2007

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

EHCS_unfit_2003

EHCS_vacant_2003 — EHCS_vacant_2007

EHCS_ wallfin_2003 — EHCS_wallfin_2007

EHCS wallstru_2003 — EHCS_wallstru_2007
EHCS_windows_2003 — EHCS_windows_2007
EHCS workdone_ 2003 — EHCS _workdone_2007

EPS_AvAnDomGasBillByHomeNonHomeSupplie
r_CashTerms
EPS_AvAnDomGasBillByHomeNonHomeSupplie
r_RealTerms
EPS_AvAnnDomElecBillsByHomeNonHomeSupp
lier_E7_CashTerms
EPS_AvAnnDomElecBillsByHomeNonHomeSupp
lier_E7_RealTerms
EPS_AvAnnDomElecBillsByHomeNonHomeSupp
lier_ST CashTerms
EPS_AvAnnDomeElecBillsByHomeNonHomeSupp
lier_ST RealTerms
EPS_AvAnnDomElecBillsSelectedTownCityUKAv
UnitCosts_1998 -
EPS_AvAnnDomElecBillsSelectedTownCityUKAv
UnitCosts_2010
EPS_AvAnnDomElecBilsForUKCountries_E7 Cas
hTerms
EPS_AvAnnDomElecBilsForUKCountries_E7_Re
alTerms
EPS_AvAnnDomeElecBilsForUKCountries_ST_Cas
hTerms
EPS_AvAnnDomElecBilsForUKCountries_ST_Rea
ITerms
EPS_AvAnnDomGasBillSelectedTownCityUKAvU
nitCosts_1998 -
EPS_AvAnnDomGasBillSelectedTownCityUKAvU
nitCosts_2010
EPS_AvAnnDomGasBillUKCountries_CashTerms
EPS_AvAnnDomGasBillUKCountries_RealTerms
EPS_AvExpWeekFuelPerConsumeHouseHoldUK
EPS_AvVariableUnitCostFixedCostElecSelectedT
ownCity_E7_2010
EPS_AvVariableUnitCostFixedCostElecSelectedT
ownCity_ST_2010
EPS_AvVariableUnitCostFixedCostGasSelectedT
ownCityGB_2010
EPS_TotalHouseholdExpEnergyUK_2006Price
EPS_TotalHouseholdExpEnergyUK_CurrentPrice

Energy Price Statistics data was supplied as a series of Microsoft
Excel spreadsheets.

The data was divided into the following categories once
downloaded:

* Average Annual Domestic Electricity Bills By Home / Non-
home supplier

* Average Annual Domestic Electricity Bills for selected
towns and cities uk average unit costs

* Average Annual Domestic Electricity Bills for UK Countries

* Average Annual Domestic Gas Bills By Home and Non
Home Supplier

* Average Annual Domestic Gas Bills For Selected towns
selected and cities uk average unit costs

* Average Annual Domestic Gas Bills for UK Countries

* Average Expenditure each week on fuel per consuming
household in the uk

* Average Variable Unit Costs and Fixed Costs for Electricity
in 2010 for selected towns and cities

* Average Variable Unit Costs and Fixed Costs for Gas in
2010 For Selected Towns and Cities Great Britain

* Total Household Expenditure on Energy in the UK

A separate FME Workbench workspace was created for each type
of data. A Microsoft Excel feature type reader was used to read
the data in to FME, and a Postgres feature type writer was used to
write the data to the database.

Os_electricitysubstations_intersect_nat_floodz
one2_v3_ 8
Os_electricitysubstations_intersect_nat_floodz
one3_v3_8
Os_energyproductionsites_intersect_nat_flood
zone2_v3_8

Each table was created by creating an intersection of the EA flood
zone shapefiles with the original OS shapefiles.

Within ESRI ArcGIS ArcMap, each OS shapefile was loaded
alongside each EA floodzone shapefile. Using the operation
“Select by Location”, selecting features from the OS feature in

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Os_energyproductionsites_intersect_nat_flood
zone3_v3 8
Os_refineries_intersect_nat_floodzone2 _v3 8
Os_refineries_intersect_nat_floodzone3 v3 8
Os_telco_masts_int_nat_floodzone2 v3 8
Os_telco_masts_int_nat_floodzone3 v3 8

guestion as the “Target Layer” and selecting the respective EA
floodzone shapefile as the “Source Layer”, the OS features were
intersected against the EA floodzones.

Each resultant set of intersecting features was then exported to a
separate shapefile, based on the input OS feature type and
floodzone selected for intersection.

Each shapefile was uploaded using the PostGIS SHP and DBF
Loader plugin

OS_ElectricitySubStations
OS_EnergyProductionSites
OS_Refineries
OS_TelcoMasts

The Ordnance Survey, energy-related data, supplied at a national-
scale was delivered as a series of ESRI Shapefiles.

Each shapefile was uploaded using the PostGIS SHP and DBF
Loader plugin

OS_EnergyProductionSites_Stations
OS_EnergyProductionSites_Turbines
OS_EnergyProductionSites_Wind
OS_Refineries_GasAssets
OS_Refineries_QilAssets
OS_Refineries_QilBoreHoles
OS_Refineries_QilGatheringStations
OS_Refineries_QilRefineries
OS_Refineries_QilWells

The Ordnance Survey Energy Production Site and Refineries data
was filtered in to respective tables, based upon the name
attribute of the original input Ordnance Survey Energy Production
Sites data:

Within ESRI ArcGIS ArcMap, the filtering was applied by using the
“Select by Attributes” tool. Once the resultant subset of features

was selected within ArcMap, they were subsequently exported to
a separate ESRI Shapefile.

* "NAME" LIKE '%Station%'
* "NAME" LIKE '%Turbine%'
¢ "NAME" LIKE '%Wind%'

* "NAME" LIKE '%Gas%'

¢ "NAME" LIKE '%0il%'

The shapefiles were uploaded to the database using the PostGIS
SHP and DBF Loader plugin

To filter the Oil Assets further from the original refineries features,
a second series of attribute value filters were applied to the oil
filter:

* “NAME” LIKE ‘%0il Bore Hole%’
* “NAME" LIKE ‘%0il Gathering%’
* “NAME" LIKE ‘%0il Gathering%’
* “NAME” LIKE ‘%0il Refinery%’
* “NAME" LIKE ‘%0il Well%’

NEDL_132kV

NEDL_33kV

NEDL_66kV
NEDL_Primary_Substations

The NEDL data was supplied as a series of ESRI Shapefiles. Each
shapefile was uploaded to the database using the PostGIS SHP and
DBF Loader plugin.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

WS1 _CGEN_DB_BusData

WS1 _CGEN_DB_CompressorData
WS1 _CGEN_DB_Connections
WS1 _CGEN_DB_DaySeason
WS1_CGEN_DB_DomlLink

WS1 _CGEN_DB_DomesticGas
WS1 _CGEN_DB_EleclLoad
WS1_CGEN_DB_Fuel
WS1_CGEN_DB_Gaslmports
WS1 CGEN_DB_GaslLoad

WS1 CGEN_DB_GasSupply

WS1 _CGEN_DB_GenData
WS1_CGEN_DB_GenPar
WS1_CGEN_DB_ImportLink

WS1 CGEN_DB_Importexpandl
WS1 _CGEN_DB_Importexpand2
WS1_CGEN_DB_LNG
WS1_CGEN_DB_LNGLink

WS1 CGEN_DB_LNGexpand
WS1 _CGEN_DB_LineData

WS1 CGEN_DB_Location

WS1 CGEN_DB_NewAssets

WS1 CGEN_DB_NodeData

WS1 _CGEN_DB_OptimData

WS1 _CGEN_DB_PipeData

WS1 _CGEN_DB_StorageData
WS1_CGEN_DB_Storagelocation
WS1 _CGEN_DB_TPeriods

WS1 CGEN_DB_Terminalexpand
WS1_CGEN_DB_WindData

The Workstream 1 CGEN database was supplied initially as a
Microsoft Access database. The database contained separate
tables that were mapped to individual output tables within
Postgres

FME Workbench was used to upload the data to the database. A
Microsoft Access feature type reader was used to read the data,
and a Postgres feature type writer used to write the data to the

database.

This data was initially supplied by Modassar Chaudry, from Cardiff
University (chaudrym@cardiff.ac.uk). This data will likely change
as the CDAM for energy alters.

WS1 CGEN_DB_StorageData_Name_NationalG
rid_Gas_Assets

This table was generated by using the “Name” attribute of the
table WS1_CGEN_DB_StorageData and matching, using SQL, this
against the “name” attribute of the table
“data_national_grid_assets”. This enabled the geometry of the
“data_national_grid_assets” table to be extracted and used as the
geometry for features within the WS1 CGEN model.

This dataset was created in an attempt to find coordinate
information for assets and facilities listed within the WS1 CGEN
model.

WS1 CGEN_DB_GenData_GenName_AEP_CW_
Nuclear_LargePS

WS1 CGEN_DB_GenData_GenName_AEP_Clos

ureCoal

WS1 CGEN_DB_GenData_GenName_AEP_Clos

ureNuclearAGR

WS1 CGEN_DB_GenData_GenName_AEP_Clos

ureNuclearMagnox

WS1 CGEN_DB_GenData_GenName_AEP_Clos

ureQil

WS1 _CGEN_DB_GenData_GenName_AEP_New

Each table was generated by matching the “GenName” attribute
of the WS1_CGEN_DB_GenData table against the respective
“name” attribute that is found in the following tables:

* AEP_CWiIntakesAtNuclearAndOtherLargeUKPowerStations
1000MWe

* AEP_ClosuresPowerStationNuclearAGR

* AEP_ClosuresPowerStationNuclearMagnox

¢ AEP_ClosuresPowerStationsCoal

* AEP_ClosuresPowerStationsQil

* AEP_PlannedNewBuildPowerStationsCoal

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Coal

WS1 _CGEN_DB_GenData_GenName_AEP_New
Gas

WS1 CGEN_DB_GenData_GenName_AEP_DEC
C_PotElec_name
WS1_CGEN_DB_GenData_GenName_AEP_Stati
on_Na

WS1 CGEN_DB_GenData_GenName_AEP_Geo
m_Matches

WS1 CGEN_DB_GenData_GenName_AEP_Geo
m_No_Matches

* AEP_PlannedNewBuildPowerStationsGas

These datasets were created in an attempt to find geographic
coordinate information for assets and facilities found within the
WS1 CGEN model.

nationalgrid_cable
nationalgrid_gas_site
nationalgrid_gas_pipeline_feeder
nationalgrid_line
nationalgrid_substation_site
nationalgrid_tower

Each of the original National Grid shapefiles were loaded in to the
database using the PostGIS SHP and DBF Loader plugin.

Nationalgrid_cable_join_GOR
Nationalgrid_gas_pipeline_feeder_join_GOR
Nationalgrid_gas_site_join_GOR
Nationalgrid_line_join_GOR
Nationalgrid_substation_site_join_GOR
Nationalgrid_tower_join_GOR

Each table was created by performing a spatial join between the
government office region data, and the original National Grid
shapefiles (see above).

Within ESRI ArcGIS ArcMap, each National Grid shapefile was
loaded. By right-clicking the National Grid data and selecting Join -
> Join data from another layer based on spatial location, it was
possible to join the government office region data.

Make sure that the government office region data is the input
layer (1), and then ensure that the option “Joining polygon to
points” is specified.

Finally, Select “it falls inside” to denote that the point data i.e.
National Grid data will have the government office region within
which it lies added to itself.

Each resultant shapefile was loaded in to the database using the
PostGIS SHP and DBF Loader plugin.

Nationalgrid_cable_intersect_nat_floodzone2
_v3_8 Join_GOR
Nationalgrid_cable_intersect_nat_floodzone3_
v3_8 Join_GOR
Nationalgrid_gas_pipeline_feeder_int_nat_fldz
2 v3_8 GOR
Nationalgrid_gas_pipeline_feeder_int_nat_fldz
3_v3_8 GOR
Nationalgrid_line_int_floodzone2_v3_8 Join_G
OR
Nationalgrid_line_int_floodzone3 _v3_8 Join_G
OR
Nationalgrid_substation_site_int_nat_floodzon
e2_v3_8 Join_GOR
Nationalgrid_substation_site_int_nat_floodzon

Each table was created by creating an intersection of the EA flood
zone shapefiles with the shapefiles generated by joining the
government office region data (see above) and the original
National Grid shapefiles

Within ESRI ArcGIS ArcMap, each OS shapefile was loaded
alongside each EA floodzone shapefile. Using the operation
“Select by Location”, selecting features from the National Grid
feature in question as the “Target Layer” and selecting the
respective EA floodzone shapefile as the “Source Layer”, the
National Grid features were intersected against the EA floodzones.

Each resultant set of intersecting features was then exported to a
separate shapefile, based on the input National Grid feature type
and floodzone selected for intersection.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

e3_v3_8 Join_GOR
Nationalgrid_tower_int_nat_floodzone2 v3 8
Join_GOR
Nationalgrid_tower_int_nat_floodzone3 v3 8
Join_GOR

Each shapefile was uploaded using the PostGIS SHP and DBF
Loader plugin

nationalgrid_jan2012_cable
nationalgrid_jan2012_gas_pipe_feeder
nationalgrid_jan2012_line
nationalgrid_jan2012_substation_site

Each of the January 2012 National Grid shapefile updates were
loaded in to the database using the PostGIS SHP and DBF Loader

plugin

Nationalgrid_jan2012_gas_agis_singlepart
Nationalgrid_tower_singlepart

The January 2012 National Grid shapefiles for gas sites and
electricity transmission towers was received as a ‘multipart’ set of
geometries.

Within ESRI ArcGIS ArcMap the tool Data Management Tools ->
Features -> Multipart to Singlepart was utilised to convert the gas
site shapefile and tower shapefile to singlepart shapefiles.

The two resultant output shapefiles were loaded in to the
database using the PostGIS SHP and DBF Loader plugin

NationalGrid_Derived_Gas_Compressor
NationalGrid_Derived_Gas_LNG_Operators
NationalGrid_Derived_Gas_Storage
NationalGrid_Derived_Gas_Terminals
Data_national_grid_assets

Each of these tables were created by extracting information from
the names of the input National Grid features, found within the
original ESRI Shapefiles, and also that found within the table
WS1 _CGEN_DB_GenData.

Many node or point features within the original data supplied by
the National Grid for the gas network were missing. In particular
this was found to be the case for smaller gas assets, often found
along the length of a gas pipeline, or at either end.

The end points of the original gas pipeline shapefile were
extracted and the names of these features were compared to
those found within the WS1_CGEN energy CDAM to determine
the likely “type” of feature.

Subnationaldomestic_elec_2008
Subnationaldomestic_elec_2009
Subnationaldomestic_elec_llsoa_2008
Subnationaldomestic_elec_llsoa_2009
Subnationaldomestic_gas_ 2008
Subnationaldomestic_gas_ 2009
Subnationaldomestic_gas_llsoa_2008
Subnationaldomestic_gas_llsoa_2009

Socioeconomic_englandwales_llsoa_2008
Socioeconomic_englandwales_mlsoa_2008
Socioeconomic_scotland_igz_2008

Subnationalelectricitygasconsumption_2005
Subnationalelectricitygasconsumption_2006

Subnationalelectricitygasconsumption_2007

Subnatinoalnondomestic_2005

The original subnational gas and electricity consumption data was
supplied as a series of Microsoft Excel spreadsheets, with a
separate file being supplied for each year of data, and then for
each government office region within England and Wales.

Each file, for a particular set of data, for each year, was combined
in to a single csv file via the use of Python scripting, and the xIrd
and csv Python modules.

Each output csv file was then written to the database using FME
Workbench. A CSV Feature type reader was used to read the data,
with a Postgres feature type writer used to write the data to the
database. A PostGIS feature type writer was used were specific
geometry for government office regions was available.

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

Subnatinoalnondomestic_2006
Subnatinoalnondomestic_2007

Socioeconomic_scotland_igz_geom_2008
Socioeconomic_englandwales_llsoa_geom_200
8
Socioeconomic_englandwales_mlsoa_geom_20
08

Figure 9 - processing steps to create and load data to the energy section of the database

ITRC

Itrc_spatial_hazards

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

EA_NAFRA_all_Nov2012

EA_NAFRA data was supplied as a series of 85 shapefiles e.g.
nf730024.shp, nf740024.shp.

1) Open ESRI ArcGIS ArcMap
2) Load all the shapefiles starting with with nfl
3) Open ArcToolbox, selecting the Merge Tool:

Data Management Tools -> General -> Merge

4) Select all the nfl shapefiles as input, and specify an output file
of nflx.shp. Execute the tool.

5) Repeat this process for each set of shapefiles i.e. nfl, nf2, nf3,
nf4, nf5, nf6, nf7.

6) Once each has completed processing, upload each file to the
itrc_hazards database using the PostGIS Shp and DBF Loader. The
result is the following tables:

EA_NAFRA_nfilx
EA_NAFRA_nf2x
EA_NAFRA_nf3x
EA_NAFRA_nf4x
EA_NAFRA_nf5x
EA_NAFRA_nf6x
EA_NAFRA_nf7x

7) Run the follwing SQL to union all the data together:

DROP TABLE IF EXISTS "EA_NAFRA_all_Nov2012";
CREATE TABLE "EA_NAFRA_all_Nov2012" AS SELECT * FROM "NAFRA_nf1x"
UNION ALL

SELECT * FROM "NAFRA_nf2x"

UNION ALL

SELECT * FROM "NAFRA_nf3x"

UNION ALL

SELECT * FROM "NAFRA_nf4x"

UNION ALL

SELECT * FROM "NAFRA_nf5x"

UNION ALL

SELECT * FROM "NAFRA_nf6x"

UNION ALL

SELECT * FROM "NAFRA_nf7x";

ALTER TABLE "EA_NAFRA_all_Nov2012" ADD CONSTRAINT enforce_dims_geom
CHECK (st_ndims(geom) = 2);

ALTER TABLE "EA_NAFRA_all_Nov2012" ADD CONSTRAINT
enforce_geotype_geom CHECK (geometrytype(geom) = 'MULTIPOLYGON'::text
OR geom IS NULL);

ALTER TABLE "EA_NAFRA_all_Nov2012" ADD CONSTRAINT enforce_srid_geom
CHECK (st_srid(geom) = 27700);

Indicative_fluvial_flood _10k_2000
Indicative_tidal_flood 10k 2000

All of these datasets, supplied by the Environment Agency, as
shapefiles, were uploaded to the itrc_hazards database via the

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

Nat_floodzone2 v3 8 PostGIS SHP and DBF Loader. No processing was undertaken prior
Nat_floodzone3 v3 8 to this uploading.
NSRI_NPD_Flood This data was supplied as an ESRI Shapefile and loaded in to the

itrc_hazards database using the PostGIS SHP and DBF Loader.

Further information is available at: http://www.landis.org.uk/npd

Figure 10 - processing and upload procedure for data within the itrc hazards database

ITRC

Itrc_spatial_water

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

EA_WM_areawm_250k
EA_WM_regionwm_250k

This data was supplied by the Environment Agency, and uploaded
to the water database using the plugin PostGIS SHP and DBF
Loader.

No processing was performed on this data prior to uploading.

OS_Reservoirs

This data was supplied by the Ordnance Survey, and uploaded to
the water database using the plugin PostGIS SHP and DBF Loader.

No processing was performed on this data prior to uploading.

OS_Reservoirs_Covered
OS_Reservoirs_Disused

These tables were produced by filtering the “name” attribute of
the OS_Reservoirs data (see above):

e “name” ILIKE ‘%Covered%’
e “name” ILIKE ‘%Disused%’

This filtering was performed within PostgreSQL, using standard
SQL.

0OS_WaterPumpingStations

This data was supplied by the Ordnance Survey, and uploaded to
the water database using the plugin PostGIS SHP and DBF Loader.

No processing was performed on this data prior to uploading.

OS_WaterPumpingStations_DisusedAssets
0OS_WaterPumpingStations_DrainingDrainageA
ssets
OS_WaterPumpingStations_HydraulicAssets
0OS_WaterPumpingStations_Pumping
OS_WaterPumpingStations_UndergroundAsset
s

0OS_WaterPumpingStations_WaterTowers
0OS_WaterPumpingStations_WindAssets

These tables were produced by filtering the “name” attribute of
the OS_WaterPumpingStations data (see above):

* "NAME" LIKE '%Disused%'

* "NAME" LIKE '%Drainage%' OR "NAME" LIKE '%Draining%'
* "NAME" LIKE '%Pumping%'

¢ "NAME" LIKE '%Underground%’

* "NAME" LIKE '%WaterTowers%'

* "NAME" LIKE '%Wind%'

1) Open ESRI ArcGIS ArcMap

2) Load the original raw OS_WaterPumpingStations shapefile
3) Select by Attributes, and run each query as defined above.
4) Save each query as an ESRI expression file (*.exp)

5) Export the selected records to a new shapefile e.g.

* 0OS_WaterPumpingStations_DisusedAssets.shp

* 0OS_WaterPumpingStations_DrainingDrainageAssets.shp
* 0OS_WaterPumpingStations_HydraulicAssets.shp

* 0OS_WaterPumpingStations_Pumping.shp

¢ 0OS_WaterPumpingStations_UndergroundAssets.shp

* 0OS_WaterPumpingStations_WaterTowers.shp

* 0OS_WaterPumpingStations_WindAssets.shp

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

6) Each of the afore-mentioned shapefiles was subsequently
uploaded to the water database using the PostGIS SHP and DBF
Loader.

os_waterpumpingstations_intersect_nat_flood
zone2_v3_8
os_waterpumpingstations_intersect_nat_flood
zone3_v3 8

These tables were produced by intersecting the original raw
0OS_WaterPumpingStations shapefile supplied by Ordnance
Survey, with each of the flood zone shapefiles supplied by the
Environment Agency.

1) Open ESRI ArcGIS ArcMap

2) Load the OS_WaterPumpingStations shapefile data
3) Load the chosen flood zone shapefile

4) Using “Select by Location”, set the following settings:

* ‘“select features from” as Selection Method

* OS_WaterPumpingStations as Target Layer

* Nat_floodzone2_v3 8 or Nat_floodzone3 v3 8 as Source
Layer

* Target feature(s) intersect the Source layer feature as
Spatial Selection Method

5) Export the selected features to a new ESRI Shapefile, for each
flood zone.

6) Upload the resultant shapefiles to the water database using the
PostGIS SHP and DBF Loader.

OS_WaterPumpingStations_Intersect_nat_floo
dzone2 v3 8 Join_GOR
OS_WaterPumpingStations_Intersect_nat_floo
dzone2 v3 8 Join_GOR

These tables were produced by initially performing a spatial join
between the government office regions for England and Wales
and the original raw OS_WaterPumpingStation data.

NOTE: Only the government office regions for England and Wales
were used as the OS_WaterPumpingStation data only covers
these areas

1) Open ESRI ArcGIS ArcMap

2) Load the OS_WaterPumpingStations shapefile data

3) Load the government office region data

3) Right click the pumping station data and select Join

4) Select “Join data from another layer based on spatial location”
5) Select the government office region data as the input layer (1)
6) Ensure that the option “Joining polygon to points” is specified.
7) Select “it falls inside” to denote that the point data i.e. pumping
station data will have the government office region within which it
lies added to itself.

The result is that each pumping station knows which government
office region it lies inside.

The data was then uploaded to the water database using the
PostGIS SHP and DBF Loader plugin

os_strategi_combined_coast_polyline
os_strategi_combined_foreshor_region

Each of these tables was created by combining the original
separate feature types into a single feature type for the whole of

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

os_strategi_combined_lakes_region
os_strategi_combined_rivers_polyline

the UK. The original Ordnance Survey-supplied Strategi data is
separated into data related to the North, and data related to the
South of the UK. Each of the original supplied shapefiles was
uploaded using the PostGIS SHP and DBF Loader plugin. FME
WorkBench was then utilised to merge data from the “North” and
“South” versions of the data, into a single “combined” outcome,
again stored in PostGIS.

The original shapefiles, separated in to North and South of the UK,
are stored within the itrc_spatial database, as PostGIS tables.

Figure 11 - processing and upload procedure for data within the itrc water database

ITRC

Itrc_spatial_wastewater

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

OS_Reservoirs

This data was supplied by the Ordnance Survey, and
uploaded to the water database using the plugin PostGIS SHP
and DBF Loader.

No processing was performed on this data prior to uploading.

OS_WaterPumpingStations_DisusedAssets
0OS_WaterPumpingStations_DrainingDrainageAssets
OS_WaterPumpingStations_HydraulicAssets
0OS_WaterPumpingStations_Pumping
0OS_WaterPumpingStations_UndergroundAssets
0OS_WaterPumpingStations_WaterTowers
OS_WaterPumpingStations_WindAssets

These tables were produced by filtering the “name” attribute
of the OS_WaterPumpingStations data (see above):

¢ "NAME" LIKE '%Disused%'

e "NAME" LIKE '%Drainage%' OR "NAME" LIKE
'%Draining%'

* "NAME" LIKE '%Pumping%'

¢ "NAME" LIKE '%Underground%’

e "NAME" LIKE '%WaterTowers%'

* "NAME" LIKE '%Wind%'

1) Open ESRI ArcGIS ArcMap

2) Load the original raw OS_WaterPumpingStations shapefile
3) Select by Attributes, and run each query as defined above.
4) Save each query as an ESRI expression file (*.exp)

5) Export the selected records to a new shapefile e.g.

* 0OS_WaterPumpingStations_DisusedAssets.shp
¢ OS_WaterPumpingStations_DrainingDrainageAssets.s
hp

* 0OS_WaterPumpingStations_HydraulicAssets.shp

* 0OS_WaterPumpingStations_Pumping.shp

¢ 0OS_WaterPumpingStations_UndergroundAssets.shp

* 0OS_WaterPumpingStations_WaterTowers.shp

* 0OS_WaterPumpingStations_WindAssets.shp
6) Each of the afore-mentioned shapefiles was subsequently
uploaded to the water database using the PostGIS SHP and
DBF Loader.

OS_WaterPumpingStations_Intersect_nat_floodzon
e2_v3_8 Join_GOR
OS_WaterPumpingStations_Intersect_nat_floodzon
e2_v3_8 Join_GOR

These tables were produced by initially performing a spatial
join between the government office regions for England and
Wales and the original raw OS_WaterPumpingStation data.

NOTE: Only the government office regions for England and
Wales were used as the OS_WaterPumpingStation data only
covers these areas

1) Open ESRI ArcGIS ArcMap

2) Load the OS_WaterPumpingStations shapefile data

3) Load the government office region data

3) Right click the pumping station data and select Join

4) Select “Join data from another layer based on spatial
location”

5) Select the government office region data as the input layer

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

(1)

6) Ensure that the option “Joining polygon to points” is
specified.

7) Select “it falls inside” to denote that the point data i.e.
pumping station data will have the government office region
within which it lies added to itself.

The result is that each pumping station knows which
government office region it lies inside.

The data was then uploaded to the water database using the
PostGIS SHP and DBF Loader plugin

Derived_poi_waste_storage_processing_disposal
Derived_poi_waste_storage_processing_disposal_se
wage_features
Derived_poi_waste_storage_processing_disposal_sl
udge_features
Derived_poi_waste_storage_processing_disposal
_slurry_features

These derived data tables were generated by filtering the
“Points_of _interest” data table using the
pointx_classification_code attribute, and varying the value to
extract the different feature types:

CREATE TABLE derived_poi_waste_storage_processing_disposal AS SELECT
* FROM points_of_interest WHERE pointx_classification_code =

‘063404471,

ALTER TABLE derived_poi_waste_storage_processing_disposal ADD
CONSTRAINT "enforce_srid_geom" CHECK (st_srid(geom) = 27700);
ALTER TABLE derived_poi_waste_storage_processing_disposal ADD
CONSTRAINT "enforce_geotype_geom" CHECK (geometrytype(geom) =
'POINT"::text OR geom IS NULL);

ALTER TABLE derived_poi_waste_storage_processing_disposal ADD
CONSTRAINT "enforce_dims_gemo" CHECK (st_ndims(geom) = 2);

Waste Storage Processing Disposal (All) = 06340441

In order to produce the filtered waste storage processing and
disposal tables for sewage, sludge and slurry respectively, a
SQL filter was applied e.g.

CREATE TABLE
derived_poi_waste_storage_processing_disposal_sewage_features AS
SELECT * FROM derived_poi_waste_storage_processing_disposal WHERE
name ILIKE '%sew%';

CREATE TABLE
derived_poi_waste_storage_processing_disposal_slurry_features AS
SELECT * FROM derived_poi_waste_storage_processing_disposal WHERE
name ILIKE '%slur%';

CREATE TABLE
derived_poi_waste_storage_processing_disposal_sludge_features AS
SELECT * FROM derived_poi_waste_storage_processing_disposal WHERE
name ILIKE '%slud%';

UWWTW_Waterbase. UWWTD_v2_codelist_Bigcitie
s

UWWTW_Waterbase_ UWWTD_v2_ codelist_ LOV
UWWTW_Waterbase_ UWWTD_v2_ codelist NUTS

The city names mapping table (Bigcities), code mapping table
(LOV) and NUT mapping tables (NUTS) were supplied as
comma separated text files.

FME Workbench was used to upload this data to the

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

database. A csv feature type reader was used to read the
data, and then a Postgres feature type writer used to write
the data to the database.

T_UWWTPS_UK_ONLY_OSGB36_Join_GOR

The Urban Waste Water Treatment Plants data was supplied
as a csv file, containing two columns used to generate
coordinates of each plant; uwwlatitude and uwwlongitude.

The data was loaded in to ESRI ArcGIS ArcMap, where it was
subsequently exported as an ESRI shapefile, in WGS84. This
data was then transformed to British National Grid using the
ArcToolbox -> Projections and Transformations -> Features ->
Project tool.

The ArcToolbox -> Extract -> Clip tool was then used to clip
the data to include UK only sites. The clipping polygon used
was the UK outline, as used to denote all the government
office regions.

A spatial join between the resultant output features and the
government office regions was performed, to create a
shapefile containing all the waste water treatment plants,
with each containing attributes denoting which government
office region it lies within.

This data was uploaded to the database using the PostGIS
SHP and DBF Loader

UWWTW_T_MSLevel
UWWTW_T_ReceivingAreas
UWWTW_T_ReportPeriod
UWWTW_T_Reporter
UWWTW_T_Uwwtp_Agglo

Feb2011 Update:

UWWTW_Feb2011 T_MSLevel
UWWTW_Feb2011 T_Reporter
UWWTW_Feb2011 T _Uwwtp_Agglo
UWWTW_Feb2011 T_ReceivingAreas
UWWTW_Feb2011 T_ReportPeriod

Aug2012 Update:
UWWTW_Aug2012_T_MSLevel
UWWTW_Aug2012_T_Reporter
UWWTW_Aug2012 T _Uwwtp_Agglo
UWWTW_Aug2012_T_ReceivingAreas
UWWTW_Aug2012 T_ReportPeriod

This data was received in Excel spreadsheet format. FME
Workbench was used to upload the data to the database.

A Microsoft Excel reader feature type was used to read the
data, whilst a Postgres feature type writer was used to write
the data to the database.

The SQL code executed to add the foreign key constraints
between these tables, can be found in the appendix of this
document, under title: SQL Code for foreign key constraints
on European Environment Agency Waste Water Data

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

UWWTW_T_Agglomerations_ UK_ONLY_OSGB
UWWTW_T_DischargePoints_ UK_ONLY_OSGB

Feb 2011 Update

UWWTW_Feb2011 T_Agglomerations_UK_ONLY_O
SGB36
UWWTW_Feb2011 T_DischargePoints_UK_ONLY_O
SGB36

Aug 2012 Update

UWWTW_T_Agglomerations_Aug2012_UK_ONLY_O
SGB36
UWWTW_T_DischargePoints_Aug2012_UK_ONLY_O
SGB36

This data was supplied as a series of csv files, containing two
columns of coordinate information with each file:

Discharge Point Coordinate Columns:

Dcplatitud
Dcplongitu

Agglomeration Coordinate Columns:

Agglatitud
Agglongitu

The separate csv files for agglomerations and discharge
points were loaded in to ESRI ArcGIS ArcMap. A separate
shapefile was created for the agglomerations and discharge
points. This was subsequently converted to British National
Grid coordinates from ETRS 1989 using ArcToolbox ->
Projections and Transformations -> Project.

Each resultant shapefile was then clipped to include features
within the UK, using the ArcToolbox -> Extract -> Clip Tool.

UWWTW_EU_SA_TW_UK_ONLY_OSGB
UWWTW_EU_SA_catchm_UK_ONLY_OSGB
UWWTW_EU_SA_coastA_UK_ONLY_OSGB
UWWTW_EU_SA_coastL_UK_ONLY_OSGB
UWWTW_EU_SA_lake_UK_ONLY_OSGB
UWWTW_EU_SA_river_UK_ONLY_OSGB

Feb 2011 Update:

UWWTW_Feb2011_EU_LSA_coastL_UK_ONLY_OSG
B36
UWWTW_Feb2011_EU_SA_TW_UK_ONLY_OSGB36
UWWTW_Feb2011_EU_SA_catchm_UK_ONLY_OSG
B36
UWWTW_Feb2011_EU_SA_coastA_UK_ONLY_OSGB
36
UWWTW_Feb2011_EU_SA_coastL_UK_ONLY_OSGB
36
UWWTW_Feb2011_EU_SA_lake_UK_ONLY_OSGB36
UWWTW_Feb2011_EU_SA_river_UK_ONLY_OSGB3
6

Aug 2012 Update: No data supplied

The original data was supplied as a series of shapefiles in
ETRS 1989. The data was loaded in to ESRI ArcGIS ArcMap,
and transformed to WGS84 coordinates using ArcToolbox ->
Projections and Transformations -> Project.

The data was also transformed to British National Grid
coordinates using the same method.

Each resultant shapefile was then clipped to include only
features within the UK. This was performed using the
ArcToolbox -> Extract -> Clip tool.

The result was a shapefile for UK only features in British
National Grid coordinates.

These shapefiles were loaded in to the database using the
PostGIS SHP and DBF Loader.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Feb 2011 Update:

UWWTW_T_DischargePoints_UK_ONLY_OSGB36_Fe
b2011 _Int_nat_fldz 2 v
UWWTW_T_DischargePoints_UK_ONLY_OSGB36_Fe
b2011 _Int_nat_fldz 3 v

Aug 2012 Update:

UWWTW_T_DischargePoints_UK_ONLY_OSGB36_A
ug2012_Int_nat_fldz 2 v
UWWTW_T_DischargePoints_UK_ONLY_OSGB36_A
ug2012_Int_nat_fldz 3 v

UWWTW_T_UWWTPS_UK_ONLY_OSGB36_Intersec
t_nat_floodzone_2 v3 8
UWWTW_T_UWWTPS_UK_ONLY_OSGB36_Intersec
t_nat_floodzone_3 v3 8

Feb 2011 Update:

T_UWWTPS_UK_ONLY_OSGB36_Feb2011_Int_nat_f
Idz_ 2 v3 8
T_UWWTPS_UK_ONLY_OSGB36_Feb2011_Int_nat_f
Idz_ 3 v3_8

Aug 2012 Update:

T UWWTPS_UK_ONLY_OSGB36_Int_nat_floodzone
_2 v3_8 Join_GOR
T UWWTPS_UK_ONLY_OSGB36_Int_nat_floodzone
_3 v3_8 Join_GOR

Each separate discharge point/agglomeration shapefile (for
Feb 2011, Aug 2012) was loaded in to ESRI ArcGIS ArcMap

The Environment Agency Flood Zone shapefiles were also
loaded in to ArcMap. Using “Select by Location” the discharge
point files were intersected against each flood zone shapefile:

Selection method: ‘select features from’

Target Layer: <input_discharge_point_shapefile> /
<input_agglomeration_shapefile>

Source Layer: <input_EA flood zone_shapefile>

Spatial selection method:
Target layer(s) features intersect the Source layer feature

The result of executing this intersection was a set of features
that lie within the different EA flood zone files.

Each output shapefile was then loaded in to the database
using the PostGIS SHP and DBF Loader.

Figure 12 - processing and upload procedures for waste water data

ITRC

Itrc_spatial_solidwaste

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

Scotland_Active_Landfill_Capacity 2007
Scotland_Non_Active_Landfill_Capacity_2007

This data was uploaded using FME Workbench. A workspace
reading in the excel spreadsheets of active and non active
landfill capacity data was created. A PostgreSQL writer,
pointing to the solid waste database was used to write this
data out to the database.

No processing was applied to this data prior to it’s upload to
the solid waste database.

Scotland_Business_waste_arisings_ LA 2009
Scotland_Business_waste_arisings_sector_2009
Scotland_Construction_Demolition_Waste Manage
d_2009

Scotland_LA_Composted Material_2009 2010
Scotland_LA_Controlled_Waste_Landfill_2009
Scotland_LA_Municipal_Compost_Method 2009 2
010

Scotland_LA_Municipal_Disposed_2009 2010
Scotland_LA_Municipal_Waste_Disposed_Type_Me
thod_2009_2010
Scotland_LA_Municipal_Waste_Material_2009_201
0
Scotland_LA_Municipal_Waste_Recycled_By_Sourc
e_2009 2010
Scotland_LA_Municipal_Waste_Recycled_Collection
_Type_2009_2010
Scotland_LA_Municipal_Recycling_ Compost_2009
2010

Scotland_LA_Special_Waste_Landfill_2009
Scotland_LA_Waste EWC_Stat
Scotland_LA_collected_municipal_waste 2009 201
0
Scotland_LA_collected_municipal_waste_breakdow
n_2009 2010

Scotland_LA collected_non_municipal_waste_brea
kdown_2009_2010

Scotland_Total Waste_Arisings_2009
Scotland_Type_Construction_Demolition_Waste_M
anaged_ 2009

This data was sourced from the Scotland Waste Data Digest
(http://www.sepa.org.uk/waste/waste_data/waste_data_dig

est.aspx).

The original data is delivered as an Excel spreadsheet, with
each sheet corresponding to a different table of data. The
attribute names of each table were mapped to a sensible
value, reducing the length of the attribute name and making
them therefore compatible with storage in a relational
database.

The data was uploaded using FME Workbench. A workspace
was created that read the resultant mapped excel
spreadsheet, containing only the tables of interest from the
Data Digest. This was then output through a PostgreSQL
writer.

No processing on the data values themselves was performed
prior to uploading the data.

Derived_poi_recycling_centres
Derived_poi_refuse_disposal_facilities
Derived_poi_waste_storage_processing_disposal

This data was originally supplied by the Ordnance Survey for
the North West region only, as a .csv file. The data was
loaded in to the “points of interest” database using FME
Workbench. A CSV reader was used to read the input data,
whilst a PostGIS writer was used to write the data to the
database.

The original csv file stored the coordinates of each point of
interest in the attributes “ITN_Easting”, and “ITN_Northing”.
To convert these attributes to a point geometry within FME, a
2DPointReplacer Transformer was used. This assigns the
ITN_Easting attribute as the X component, and ITN_Northing

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

attribute as the Y component. Further information can be
found here:
http://docs.safe.com/fme/2010/htm|/FME_Transformers/co
ntent/transformers/2dpointreplacer.htm.

Finally once the data had been written to the database, the
following SQL was executed to create tables of different
points of interest (recycling centres (06340462),
refuse_disposal_facilities (06340440),
waste_storage_processing_disposal (06340441)):

DROP TABLE IF EXISTS derived_poi_recycling_centres;

CREATE TABLE derived_poi_recycling_centres AS SELECT * FROM
points_of_interest WHERE pointx_classification_code = '06340462";

ALTER TABLE derived_poi_recycling_centres ADD CONSTRAINT
"enforce_srid_geom" CHECK (st_srid(geom) = 27700);

ALTER TABLE derived_poi_recycling_centres ADD CONSTRAINT
"enforce_geotype_geom" CHECK (geometrytype(geom) = 'POINT'::text OR
geom IS NULL);

ALTER TABLE derived_poi_recycling_centres ADD CONSTRAINT
"enforce_dims_gemo" CHECK (st_ndims(geom) = 2);

DROP TABLE IF EXISTS derived_poi_refuse_disposal_facilities;

CREATE TABLE derived_poi_refuse_disposal_facilities AS SELECT * FROM
points_of_interest WHERE pointx_classification_code ='06340440";

ALTER TABLE derived_poi_refuse_disposal_facilities ADD CONSTRAINT
"enforce_srid_geom" CHECK (st_srid(geom) = 27700);

ALTER TABLE derived_poi_refuse_disposal_facilities ADD CONSTRAINT
"enforce_geotype_geom" CHECK (geometrytype(geom) = 'POINT"::text OR
geom IS NULL);

ALTER TABLE derived_poi_refuse_disposal_facilities ADD CONSTRAINT
"enforce_dims_gemo" CHECK (st_ndims(geom) = 2);

DROP TABLE IF EXISTS derived_poi_waste_storage_processing_disposal;

CREATE TABLE derived_poi_waste_storage_processing_disposal AS SELECT
* FROM points_of_interest WHERE pointx_classification_code =
'06340441";

ALTER TABLE derived_poi_waste_storage_processing_disposal ADD
CONSTRAINT "enforce_srid_geom" CHECK (st_srid(geom) = 27700);
ALTER TABLE derived_poi_waste_storage_processing_disposal ADD
CONSTRAINT "enforce_geotype_geom" CHECK (geometrytype(geom) =
'POINT'"::text OR geom IS NULL);

ALTER TABLE derived_poi_waste_storage_processing_disposal ADD
CONSTRAINT "enforce_dims_gemo" CHECK (st_ndims(geom) = 2);

Scotland_active_landfill_sites 2007
Scotland_active_landfill_sites 2008
Scotland_non_active_landfill_sites_2007
Scotland_non_active_landfill_sites_2008

This data was sourced from the 2007 and 2008 Scottish
Environment Protection Agency (SEPA) reports: Landfill
Capacity Report for Scotland

Each report contained a table of remaining landfill capacities
by site, at the end of each reporting year. Within the data, a

National Grid reference was given to locate each site, on the
100km grid. To retrieve the true National Grid coordinate i.e.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Easting and Northing, the following procedure was applied to
each coordinate within Excel:

e.g. NO 6882 9731

1) Extract the two letters at the beginning of the reference
e.g. NO, to a separate column

2) Extract the first component e.g. 6882, called e

3) Extract the second component e.g. 9731, called n

4) The following grid was used to determine what the initial
Easting and Northing coordinate digit should be, based on the
letters extracted in 1).

e.g. NO

Easting for NO = 300

Northing for NO = 700

The additional ‘00’ can be ignored for now.

HP
HT HU
1 law ax Y HZ
“INalNBING ND
VINF NG NH NJ |NK
INLINMINN NO
"1 INRINS NTINU.
NW NX NY|NZ OV
sc|sp|SE 1A
SH| sJ|sk | TF 'Ta
"1 lsmisnisolsp TL ™
" Isr/ss|sT/su/Ta TR
“|svisw sx sy sz v

0 100 200 300 400 500 600

Figure 13 - National Grid Letter Mapping
(http://www.ordnancesurvey.co.uk/oswebsite/gi/nationalgrid/nationalg
rid.pdf)

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

This was repeated for all sites within all reports that
contained National Grid references as the only geographic
coordinate information.

The attribute names of each sheet were mapped to a sensible
value, reducing the length of the attribute name and making
them therefore compatible with storage in a relational
database.

Each spreadsheet sheet was subsequently created as an ESRI
Feature Class within a Geodatabase. A separate Geodatabase
was created for each year’s worth of data. This operation was
performed within ESRI ArcMap.

FME Workbench was used to read the resultant feature
classes using a Geodatabase reader, and then subsequently
written to the database using a PostGIS writer.

Scotland_landfills_authorised 2009
Scotland_landfills_authorised 2010
Scotland_landfills_closed_2009
Scotland_landfills_closed 2010
Scotland_landfills_restoration_2009
Scotland_landfills_restoration_2010

This data was sourced from the 2009 and 2010 Scottish
Environment Protection Agency (SEPA) reports: Landfill
Capacity Report for Scotland.

The original spreadsheet for each year contained a column of
Easting and Northing’s. This negated the need to perform the
steps detailed above to determine the full Easting or Northing
component of the coordinate.

The attribute names of each sheet were mapped to a sensible
value, reducing the length of the attribute name and making
them therefore compatible with storage in a relational
database.

Each spreadsheet sheet was created as an ESRI Feature Class
within a Geodatabase, with a separate Geodatabase created
for each year’s worth of data. This operation was performed
within ESRI ArcMap.

Finally FME Workbench was used to read the resultant
feature classes using a Geodatabase reader, and then
subsequently written to the database using a PostGIS writer.

Scotland_wastesites_nothandlingwaste_2007
Scotland_wastesites_wml_ppcsitehandlingwaste_20
07

Scotland_ppcsites_2007

This data was sourced from spreadsheets released alongside
the 2007 Scottish Environment Protection Agency (SEPA)
reports: National Waste Capacity Report for Scotland

Initially the data was separated into three distinct sets:

* Waste Management Licence/Pollution Prevention
and Control Sites

* Sites not handling waste

* Pollution Prevention Control Sites only

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Within the 2007 data, only a 100km grid reference was given
to locate each site, therefore these were converted to full
National Grid coordinates (see method detailed above for full
procedure).

Each resultant set was then converted to a Feature Class to
be stored in a Geodatabase, via the use of ESRI ArcMap.

Scotland_wastesites_siteshandlingwaste_2008
Scotland_wastesites_sitesnothandlingwaste_2008
Scotland_wastesites_allsites_2009
Scotland_wastesites_2010

This data was sourced from spreadsheets released alongside
the Scottish Environment Protection Agency (SEPA) reports:

* National Waste Capacity Report 2008
* National Waste Capacity Report 2009
* Waste Sites and Capacity Report 2010

Initially the data for 2008 was split into those sites handling,
and those not handling sites. Each of the spreadsheet sheets
already contained full National Grid coordinates.

A separate ESRI Geodatabase was created for each year’s
worth of data. A separate feature class for each subset of
data for each year was then created via ESRI ArcMap, using
the National Grid coordinates already present in the original
data.

FME Workbench was then used to read each of the
subsequent ESRI Geodatabase’s and a PostGIS writer to write
the data out to the solid waste database.

Figure 14 - processing and upload procedures for solid waste data

ITRC

Itrc_ws1_solid_waste_distances

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

East_Midlands_Centroid
East_Of England_Centroid
GLA_Centroid
North_East_Centroid
North_West_Centroid
South_East_Centroid
South_West_Centroid
Yorkshire_Humber_Centroid
West_Midlands_Centroid
Wales_Centroid
Scotland_Centroid

Each government office region centroid was calculated using
the ArcToolbox -> Data Management Tools -> Features ->
Feature To Point tool, available from ESRI ArcGIS ArcMap

The result was an ESRI shapefile per government office
region. Each shapefile was loaded in to the database using
the PostGIS SHP and DBF Loader plugin.

East_Midlands_Vertices
East_Of England_Vertices
GLA_Vertices
North_East_Vertices
North_West_Vertices
South_East_Vertices
South_West_Vertices
Yorkshire_Humber_Vertices
West_Midlands_Vertices
Wales_Vertices
Scotland_Vertices

Each government office region vertices table was calculated
using the ESRI ArcGIS ArcToolbox tool

ArcToolbox -> Data Management Tools -> Feature Vertices To
Point.

The result was an ESRI shapefile per government office
region. Each shapefile was loaded in to the database using
the PostGIS SHP and DBF Loader plugin.

England Output Areas (County)

England_OA_2001_Centroid_EastEngland_County_
GOR_BD_AVG
England_OA_2001_Centroid_EastMidlands_County
GOR_BD_AVG

England_OA_2001_Centroid_GLA_ County GOR_BD
_AVG
England_OA_2001_Centroid_NorthEast_County_GO
R_BD_AVG
England_OA_2001_Centroid_NorthWest_County_G
OR_BD_AVG
England_OA_2001_Centroid_SouthEast_County_GO
R_BD_AVG
England_OA_2001_Centroid_SouthWest_County_G
OR_BD_AVG
England_OA_2001_Centroid_WestMidlands_County
_GOR_BD_AVG
England_OA_2001_Centroid_YorkshireHumber_Cou
nty_GOR_BD_AVG

England Output Areas (Unitary Authority)

England_UA 2001 Centroid_EastMidlands_GOR_B
D_AVG

England_UA 2001_Centroid_EastOfEngland_GOR_B
D_AVG
England_UA_2001_Centroid_NorthEast GOR_BD_A

Each table was calculated by executing the plpgSQL function
calculate_GOR_centroid_to_boundary_distance for each
government office region e.g.

The input to the function are:

1) A table containing the centroids of output areas within the
government office region

2) The vertices of the government office region boundary

3) The name of the output table to create

SELECT * FROM
calculate_GOR_centroid_to_boundary_distance('England_OA
~2001_County_Centroid_East_Midlands_Near_GOR_Dist','En
gland_GOR_East_Midlands_Vertices','England_OA_2001_Cen
troid_EastMidlands_County_GOR_BoundDist_AVG');

The details of the function
calculate_GOR_centroid_to_boundary_distance can be found
in appendix section ‘plpgSQL function code for
calculate_GOR_centroid_to_boundary_distance’.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

VG

England_UA 2001 Centroid_NorthWest GOR_BD_
AVG

England_UA_2001_Centroid_SouthEast GOR_BD_A
VG

England_UA 2001 _Centroid_SouthWest GOR_BD _

AVG

England_UA 2001 Centroid_WestMidlands_GOR_B
D_AVG

England_UA_ 2001_Centroid_YorkshireHumber_GO

R_BD_AVG

England Output Areas (County)

England_OA_2001_Centroid_EastEngland_County_
GOR_BD_AVG_Join

England_OA_2001_Centroid_EastMidlands_County

GOR_BD_AVG_Join
England_OA_2001_Centroid_GLA_ County GOR_BD
_AVG_Join
England_OA_2001_Centroid_NorthEast_County_GO
R_BD_AVG_Join
England_OA_2001_Centroid_NorthWest_County_G
OR_BD_AVG_Join
England_OA_2001_Centroid_SouthEast_County_GO
R_BD_AVG_Join
England_OA_2001_Centroid_SouthWest_County_G
OR_BD_AVG_Join
England_OA_2001_Centroid_WestMidlands_County
_GOR_BD_AVG_Join
England_OA_2001_Centroid_YorkshireHumber_Cou
nty_GOR_BD_AVG_Join

England Output Areas (Unitary Authority)

England_UA 2001 Centroid_EastMidlands_GOR_B
D_AVG_Join

England_UA 2001_Centroid_EastOfEngland_GOR_B
D_AVG_Join

England_UA 2001 _Centroid_NorthEast GOR_BD_A
VG_Join

England_UA 2001 Centroid_NorthWest GOR_BD_
AVG_Join
England_UA_2001_Centroid_SouthEast GOR_BD_A
VG_Join

England_UA 2001 _Centroid_SouthWest GOR_BD
AVG_Join

England_UA 2001 Centroid_WestMidlands_GOR_B
D_AVG_Join

England_UA_ 2001_Centroid_YorkshireHumber_GO
R_BD_AVG_Join

Each join table was derived by joining the appropriate output
area centroid geometry back to the average distance tables
calculated for each government office region. This was
repeated for each set of output areas per government office
region e.g.

CREATE TABLE
"England_OA_2001_Centroid_EastMidlands_County_GOR_BoundDist_AVG
_Join" AS SELECT
"England_OA_2001_County_Centroid_East_Midlands_Near_GOR_Dist".*,
"England_OA_2001_Centroid_EastMidlands_County_GOR_BoundDist_AVG
"."AVG_Vertex_Distance" FROM
"England_OA_2001_Centroid_EastMidlands_County_GOR_BoundDist_AVG
", "England_OA_2001_County_Centroid_East_Midlands_Near_GOR_Dist"
WHERE
"England_OA_2001_Centroid_EastMidlands_County_GOR_BoundDist_AVG
".gid =
"England_OA_2001_County_Centroid_East_Midlands_Near_GOR_Dist".gid

’

ALTER TABLE
"England_OA_2001_Centroid_EastMidlands_County_GOR_BoundDist_AVG
_Join" ADD CONSTRAINT enforce_dims_geom CHECK (st_ndims(geom) = 2);
ALTER TABLE
"England_OA_2001_Centroid_EastMidlands_County_GOR_BoundDist_AVG
_Join" ADD CONSTRAINT enforce_geotype_geom CHECK
(geometrytype(geom) = 'POINT"::text OR geom IS NULL);

ALTER TABLE
"England_OA_2001_Centroid_EastMidlands_County_GOR_BoundDist_AVG
_Join" ADD CONSTRAINT enforce_srid_geom CHECK (st_srid(geom) =
27700);

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

Figure 15 - processing for derived data to calculate distances for WS1 Solid Waste CDAM

ITRC

Itrc_spatial_transport

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

CAA_Table_01_Size_of UK_Airports_xxxx
CAA_Table_02_1 Main_Outputs_of UK_Airports_x
XXX

CAA_Table_02_2 Summary_Of Activity_at_UK_Air
ports_Xxxx

CAA_Table_02_3 Use_of UK_Airports_xxxx
CAA_Table_02_4 Use_of UK_Airports_by Purpose
_XXXX

CAA_Table_03_1_Aircraft_Movements_xxxx
CAA_Table_03_2_ Aircraft_Movements
CAA_Table_04 1 Air_Transport_Movements_Xxxx
CAA_Table_04 1 Air_Transport_Movements_Xxxx
CAA_Table_05_Air_Transport_Movements_xxxx
CAA_Table_06_Air_Transport_Movements_vs_Previ
ous_Year_Xxxx
CAA_Table_07_1_Air_Transport_Movements_Divert
ed_xxxx

CAA_Table_07_2 Number_of_Diversions_to_UK_Ai
rports_Xxxx

CAA_Table_08 Air_Passengers_by Type_and_Nat_
of _Operator_xxxx

CAA_Table_09 Terminal_and_Transit_Pax_xxxx
CAA_Table_10 1 EU_and_Other_Intl_Terminal_Pax
_Traffic_xxxx

CAA_Table_10 2 Domestic_Terminal_Pax_Traffic_x
XXX

CAA_Table_10_3 Terminal_Pax_xxxx

CAA_Table_11 Intl_Pax_Traffic_to_from_UK_by Co
untry_Xxxx

CAA_Table_12 1 Intl_Air_Pax_Route_Analysis
CAA_Table_13 1 Freight by Type_and_Nat_of Op
erator_xxxx

CAA_Table_13 2 Freight_ xxxx

CAA_Table_14 Intl and_Domestic_Freight xxxx
CAA_Table_15 Freight_by Aircraft_Configuration_x
XXX

CAA_Table_16_1 Mail by Type and_Nat_of Oper
ator_xxxx

CAA_Table_16_2 Mail_xxxx

CAA_Table_17 Intl_and_Domestic_Mail_xxxx
CAA_Table_18 Mail_by_Acft_Configuration_xxxx
CAA_Table_19 Pax_and_Air_Transport_Movements
_by fixed_and_rotar

This data was supplied a series of 19 separate Excel
spreadsheets, with each output table corresponding to a
sheet within each spreadsheet.

FME Workbench was used to write this data to the database.
A Microsoft Excel feature type reader was used to read each
sheet from each file. A Postgres feature type writer was then
used to write the data to the database.

No processing of the data was performed prior to it being
uploaded to the database.

OS_Airports
OS_Seaports

This data was loaded using the PostGIS SHP and DBF Loader
plugin.

No processing was performed on this data prior to it being
uploaded.

Os_strategi_combined_a_road_polyline

Each of these tables was created by combining the original

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Os_strategi_combined_b_road_polyline
Os_strategi_combined_ferry_polyline
Os_strategi_combined_minor_rd_polyline
Os_strategi_combined_motorway_polyline
Os_strategi_combined_primy_rd_polyline
Os_strategi_combined_railway_polyline

separate feature types into a single feature type for the
whole of the UK. The original Ordnance Survey-supplied
Strategi data is separated into data related to the North, and
data related to the South of the UK. Each of the original
supplied shapefiles was uploaded using the PostGIS SHP and
DBF Loader plugin. FME WorkBench was then utilised to
merge data from the “North” and “South” versions of the
data, into a single “combined” outcome, again stored in
PostGIS.

The original shapefiles, separated in to North and South of
the UK, are stored within the itrc_spatial database, as PostGIS
tables.

os_strategi_ comb_a_road_polyline_int_nat_floodzo
ne_2 v3_8

os_strategi_ comb_a_road_polyline_int_nat_floodzo
ne_3 v3_8

os_strategi comb_b_road_polyline_int_nat_floodzo
ne_2 v3_8

os_strategi comb_b_road_polyline_int_nat_floodzo
ne_3 v3_8
os_strategi_comb_minor_rd_polyline_int_nat_flood
zone_2 v3_ 8
os_strategi_comb_minor_rd_polyline_int_nat_flood
zone_3 v3_8
os_strategi_comb_motorway_polyline_int_nat_floo
dzone 2 v3 8
os_strategi_comb_motorway_polyline_int_nat_floo
dzone 3 v3 8
os_strategi_comb_primy_rd_polyline_int_nat_flood
zone_2 v3_ 8
os_strategi_comb_primy_rd_polyline_int_nat_flood
zone_3 v3_8
os_strategi_combined_railway_polyline_int_nat_flo
odzone_2 v3 8
os_strategi_combined_railway_polyline_int_nat_flo
odzone_3 v3 8

These tables were produced by intersecting the combined OS
Strategi data, with each of the flood zone shapefiles supplied
by the Environment Agency.

1) Open ESRI ArcGIS ArcMap

2) Load the OS Strategi shapefile data

3) Load the chosen flood zone shapefile

4) Using “Select by Location”, set the following settings:

* ‘“select features from” as Selection Method

* <insert OS Strategi Layer of choice> as Target Layer

* Nat_floodzone2 v3_ 8 or Nat_floodzone3 v3 8 as
Source Layer

* Target feature(s) intersect the Source layer feature as
Spatial Selection Method

5) Export the selected features to a new ESRI Shapefile, for
each flood zone.

6) Upload the resultant shapefiles to the transport database
using the PostGIS SHP and DBF Loader.

os_strategi comb_a_road_polyline_int_nat_fldzn_2
_v3_8 Join_GOR

os_strategi comb_a_road_polyline_int_nat_fldzn_3
_v3_8 Join_GOR

os_strategi_ comb_b_road_polyline_int_nat_fldzn_2
_v3_8 Join_GOR

os_strategi_ comb_b_road_polyline_int_nat_fldzn_3
_v3_8 Join_GOR
os_strategi_comb_minor_rd_plyln_int_nat_fldzn_2
_v3_8 Join_GOR
os_strategi_comb_minor_rd_plyln_int_nat_fldzn_3
_v3_8 Join_GOR
os_strategi_comb_motorway_plyln_int_nat_fldzn_2
_v3_8 Join_GOR

These tables were produced by initially performing a spatial
join between the government office regions for England and
Wales and the shapefiles produced by intersecting the OS
Strategi data with the EA flood zones.

1) Open ESRI ArcGIS ArcMap

2) Load the OS_Strategi shapefile data

3) Load the government office region data

3) Right click the OS Strategi data and select Join

4) Select “Join data from another layer based on spatial
location”

5) Select the government office region data as the input layer
(1)

6) Ensure that the option “Joining polygon to points” is

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

os_strategi_comb_motorway_plyln_int_nat_fldzn_3
_v3_8 Join_GOR

os_strategi_ comb_primy_rd_plyln_int_nat_fldzn_2_
v3_8 Join_GOR

os_strategi_ comb_primy_rd_plyln_int_nat_fldzn_3
v3_8 Join_GOR
os_strategi_comb_railway_plyln_int_nat_fldzn_2 v
3_8 Join_GOR
os_strategi_comb_railway_plyln_int_nat_fldzn_3 v
3_8 Join_GOR

specified.

7) Select “it falls inside” to denote that the point data i.e. OS
Strategi data will have the government office region within
which it lies added to itself.

The result is that each pumping station knows which
government office region it lies inside.

The data was then uploaded to the transport database using
the PostGIS SHP and DBF Loader plugin

Os_meridian_2_a_road_polyline
Os_meridian_2_b_road_polyline
Os_meridian_2_junction_font_point
Os_meridian_2_minor_rd_polyline
Os_meridian_2_motorway_polyline
Os_meridian_2_rail_In_polyline
Os_meridian_2_rndabout_point
Os_meridian_2_roadnode_point
Os_meridian_2_station_point

Each of these tables was originally supplied as a series of ESRI
shapefiles, covering all of the UK.

FME WorkBench was used to create a workspace able to read
the shapefiles, and then write them out as PostGIS tables.

No processing was performed on these raw datasets, prior to
their uploading.

os_meridian_a_road_intersect_nat_floodzone2 v3_
8
os_meridian_a_road_intersect_nat_floodzone3 v3_

8

os_meridian_b_road_intersect_nat_floodzone2 v3_

8

os_meridian_b_road_intersect_nat_floodzone3_v3_

8

os_meridian_minor_road_intersect_nat_floodzone2
v3_8

os_meridian_minor_road_intersect_nat_floodzone3
_v3_8
os_meridian_motorway_intersect_nat_floodzone2_
v3_8
os_meridian_motorway_intersect_nat_floodzone3_
v3_8
os_meridian_rail_In_intersect_nat_floodzone2 v3_
8
os_meridian_rail_In_intersect_nat_floodzone3 v3_
8
os_meridian_rndabout_pnt_intersect_nat_floodzon
e2 v3_ 8
os_meridian_rndabout_pnt_intersect_nat_floodzon
e3 v3_ 8
os_meridian_station_pnt_intersect_nat_floodzone2
_v3_8
os_meridian_station_pnt_intersect_nat_floodzone3
v3_8

These tables were produced by intersecting the combined OS
Meridian 2 data, with each of the flood zone shapefiles
supplied by the Environment Agency.

1) Open ESRI ArcGIS ArcMap

2) Load the OS Meridian 2 shapefile data

3) Load the chosen flood zone shapefile

4) Using “Select by Location”, set the following settings:

* “select features from” as Selection Method

* <insert OS Meridian 2 Layer of choice> as Target
Layer

* Nat_floodzone2 v3_ 8 or Nat_floodzone3 v3 8 as
Source Layer

* Target feature(s) intersect the Source layer feature as
Spatial Selection Method

5) Export the selected features to a new ESRI Shapefile, for
each flood zone.

6) Upload the resultant shapefiles to the transport database
using the PostGIS SHP and DBF Loader.

OS_Meridian_A_Road_Int_nat_floodzone2 v3 8 Jo
in_GOR
OS_Meridian_A_Road_Intersect_nat_floodzone3_v3
_8 Join_GOR

These tables were produced by initially performing a spatial
join between the government office regions for England and
Wales and the shapefiles produced by intersecting the OS
Meridian data with the EA flood zones.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

OS_Meridian_B_Road_Intersect_nat_floodzone2 v3
_8 Join_GOR
OS_Meridian_B_Road_Intersect_nat_floodzone3 v3
_8 Join_GOR
OS_Meridian_Minor_Rd_Intersect_nat_floodzone2_
v3_8 Join_GOR
OS_Meridian_Minor_Rd_Intersect_nat_floodzone3_
v3_8 Join_GOR
OS_Meridian_Motorway_Intersect_nat_floodzone2
_v3_8 Join_GOR
OS_Meridian_Motorway_Intersect_nat_floodzone3
_v3_8 Join_GOR
OS_Meridian_Rail_Ln_Intersect_nat_floodzone2 v3
_8 Join_GOR
OS_Meridian_Rail_Ln_Intersect_nat_floodzone3 v3
_8 Join_GOR
OS_Meridian_Station_Pnt_Intersect_nat_floodzone
2 v3_8 Join_GOR
OS_Meridian_Station_Pnt_Intersect_nat_floodzone
3_v3_8 Join_GOR

1) Open ESRI ArcGIS ArcMap

2) Load the OS_Meridian shapefile data

3) Load the government office region data

3) Right click the OS Meridian data and select Join

4) Select “Join data from another layer based on spatial
location”

5) Select the government office region data as the input layer
(1)

6) Ensure that the option “Joining polygon to points” is
specified.

7) Select “it falls inside” to denote that the point data i.e. OS
Strategi data will have the government office region within
which it lies added to itself.

The result is that each pumping station knows which
government office region it lies inside.

The data was then uploaded to the transport database using
the PostGIS SHP and DBF Loader plugin

Naptan_coachreferences
Naptan_ferryreferences
Naptan_flexible
Naptan_hailride_end
Naptan_hailride_start
Naptan_railreferences
Naptan_stopareas
Naptan_stops

The original National Public Transport Access Nodes
(NAPTAN) data was supplied as a set of csv files. Each file
contained Easting and Northing columns giving geographic
coordinates to each feature in each file. Each file was loaded
in to ESRI ArcGIS ArcMap, and subsequently converted in to
an ESRI Shapefile. The data was then uploaded via the use of
the PostGIS DBF and SHP Loader plugin.

Nptg_localities
Nptg_plusbusmapping

The original National Public Transport Gazetteer (NPTG) data
was supplied as a series of csv files. These files were
converted to ESRI Shapefiles via the use of ESRI ArcGIS
ArcMap, as each contained Easting and Northing coordinate
information. The resultant shapefiles were subsequently
uploaded to the database via the PostGIS DBF and SHP
Loader plugin.

DFT_Annualaveragedailyflow
DFT_Traffic

Annual Average Daily Flow and Traffic Data sourced from the
Department for Transport (Dft) was delivered in separate csv
files for each government office region (12).

An FME Workbench workspace was created, with a CSV
reader added to read either all by-region daily flow csv files,
or all by-region traffic data csv files. A Postgres writer was
added to then write out this data to Postgres tables; a table
for daily flow data, and a table for traffic data.

DFT_CP_locations

The count point locations for the annual average daily flow
and traffic data are repeated within each set. To extract a
table of distinct count point locations from the data, the
following SQL was executed, creating a table of unique count
point locations.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

CREATE TABLE dft_cp_locations AS SELECT DISTINCT("CP") as cp, "SRefE" as
srefe, "SRefN" as srefn, ST_SetSRID(ST_MakePoint("SRefE",
"SRefN"),27700) as geom FROM dft_annualaveragedailyflow ORDER BY
"CP" ASC;

ALTER TABLE dft_cp_locations ADD CONSTRAINT dft_cp_unique UNIQUE
(cp);

ALTER TABLE dft_cp_locations ADD CONSTRAINT enforce_dims_geom
CHECK (st_ndims(geom) = 2);

ALTER TABLE dft_cp_locations ADD CONSTRAINT enforce_geotype_geom
CHECK (geometrytype(geom) = 'POINT'::text OR geom IS NULL);

ALTER TABLE dft_cp_locations ADD CONSTRAINT enforce_srid_geom
CHECK (st_srid(geom) = 27700);

CREATE INDEX dft_cp_locations_geom_gist
ON dft_cp_locations
USING gist
(geom);

DFT_Annualaveragedailyflow_with_geom
DFT_Traffic_with_geom

The tables “DFT_Annualaveragedailyflow” and “DFT_Traffic”
do not contain the associated count point geometry for each.
The geometry was added, and a new table created for the
daily flow and traffic data by executing the following SQL:

Annual Average Daily Flow:

DROP TABLE IF EXISTS dft_annualaveragedailyflow_with_geom;

CREATE TABLE dft_annualaveragedailyflow_withgeom AS SELECT data.*,
cp.cp as cp, cp.srefe as srefe, cp.srefn as srefn, cp.geom as geom FROM
dft_annualaveragedailyflow as data, dft_cp_locations as cp WHERE
data."CP" = cp.cp;

ALTER TABLE dft_annualaveragedailyflow_with_geom ADD CONSTRAINT
enforce_dims_geom CHECK (st_ndims(geom) = 2);

ALTER TABLE dft_annualaveragedailyflow_with_geom ADD CONSTRAINT
enforce_geotype_geom CHECK (geometrytype(geom) = 'POINT"::text OR
geom IS NULL);

ALTER TABLE dft_annualaveragedailyflow_with_geom ADD CONSTRAINT
enforce_srid_geom CHECK (st_srid(geom) = 27700);

DROP INDEX IF EXISTS dft_annualaveragedailyflow_withgeom_gist;

CREATE INDEX dft_annualaveragedailyflow_withgeom_gist
ON dft_annualaveragedailyflow_withgeom
USING gist
(geom);

Traffic:

DROP TABLE IF EXISTS dft_traffic_withgeom;

CREATE TABLE dft_traffic_withgeom AS SELECT data.*, cp.cp as cp, cp.srefe
as srefe, cp.srefn as srefn, cp.geom as geom FROM dft_traffic as data,
dft_cp_locations as cp WHERE data."CP" = cp.cp;

ALTER TABLE dft_traffic_withgeom ADD CONSTRAINT enforce_dims_geom
CHECK (st_ndims(geom) = 2);

ALTER TABLE dft_traffic_withgeom ADD CONSTRAINT
enforce_geotype_geom CHECK (geometrytype(geom) = 'POINT"::text OR
geom IS NULL);

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

ALTER TABLE dft_traffic_withgeom ADD CONSTRAINT enforce_srid_geom
CHECK (st_srid(geom) = 27700);

DROP INDEX IF EXISTS dft_traffic_withgeom;

CREATE INDEX dft_traffic_withgeom_gist
ON dft_traffic_withgeom
USING gist
(geom);

Openflights_airlines

The openflights airline data is available as .dat text file. This
was converted to a csv file by adding the following column
names to the first line of the airline file:

e airlineid
* name
e alias

* jata_code
* icao_code

¢ callsign
* country
* active

Openflights_airports_uk_only

The openflights airports data is available as a .dat text file.
This file was converted to a standard .csv file, by adding the
following column names to the first line of each original file:

Airport attribute names:

airportid
name

city
country
iata_faa_c
icao_code
latitude
longitude
altitude
timezone
dst

NOTE: This data is still in WGS84 (latitude/longitude). See
steps for dataset Openflights_airports_uk_only_osgb36 for
converting data to British National Grid

1) Open ESRI ArcGIS ArcMap

2) Load the new airport csv file, with headers added

3) Create a shapefile of these airports, using the latitude as
the ‘Y’ component of the coordinate, and longitude as the ‘X’
component of the coordinate.

4) Export this to a new shapefile e.g.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

openflights_airports_worldwide_wgs84.shp

This data was loaded in to the database using FME
Workbench. A shapefile reader reads the data in to FME, and
a PostGIS writer, writes the data to the database.

5) The data was then filtered to extract the UK only airports
by running the following SQL:

DROP TABLE IF EXISTS openflights_airports_uk_only;

CREATE TABLE openflights_airports_uk_only AS SELECT * FROM
openflights_airports_worldwode_wgs84 WHERE country = 'United
Kingdom®;

ALTER TABLE openflights_airports_uk_only ADD CONSTRAINT
openflights_airports_uk_only_prkey PRIMARY KEY (airportid);

ALTER TABLE openflights_airports_uk_only ADD CONSTRAINT
enforce_dims_geom CHECK (st_ndims(geom) = 2);

ALTER TABLE openflights_airports_uk_only ADD CONSTRAINT
enforce_geotype_geom CHECK (geometrytype(geom) = 'POINT"::text OR
geom IS NULL)

DROP INDEX IF EXISTS openflights_airports_uk_only_geom_gist;
CREATE INDEX openflights_airports_uk_only_geom_gist ON
openflights_airports_uk_only USING gist(geom);

openflights_airports_uk_only osgh36

The following SQL converts the table
openflights_airports_uk_only to use British National Grid
coordinates;

CREATE TABLE openflights_airports_uk_only_OSGB36 AS SELECT * FROM
openflights_airports_uk_only;

ALTER TABLE openflights_airports_uk_only_0OSGB36 ADD COLUMN
geom_36 geometry;

UPDATE openflights_airports_uk_only_OSGB36 SET geom_36 =
ST_Transform(ST_SetSRID(geom, 4326), 27700);

ALTER TABLE openflights_airports_uk_only_OSGB36 DROP COLUMN geom;
ALTER TABLE openflights_airports_uk_only_OSGB36 RENAME COLUMN
geom_36 TO geom;

ALTER TABLE openflights_airports_uk_only_OSGB36 ADD CONSTRAINT
enforce_geotype_geom CHECK (geometrytype(geom) = 'POINT"::text OR
geom IS NULL);

ALTER TABLE openflights_airports_uk_only_OSGB36 ADD CONSTRAINT
enforce_dims_geom CHECK (st_ndims(geom) = 2);

ALTER TABLE openflights_airports_uk_only_OSGB36 ADD CONSTRAINT
enforce_srid_geom CHECK (st_srid(geom) = 27700);

ALTER TABLE openflights_airports_uk_only_OSGB36 ADD PRIMARY KEY
(airportid);

DROP INDEX IF EXISTS openflights_airports_uk_only_OSGB36_geom_gist;
CREATE INDEX openflights_airports_uk_only_OSGB36_geom_gist ON
openflights_airports_uk_only_OSGB36 USING gist(geom);

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Openflights_routes_uk_only

The openflights airports data is available as a .dat text file.
This file was converted to a standard .csv file, by adding the
following column names to the first line of each original file:

Route attribute names:

airline

airline_id
source_airport
source_airport_id
destination_airport
destination_airport_id
codeshare

stops

equipment

NOTE: This data is still in WGS84 (latitude/longitude). See
steps for dataset Openflights_routes_uk_only_osgb36 for
converting data to British National Grid

This data was loaded in to the database using FME
Workbench. A csv reader reads the data in to FME, and a
Postgres writer, writes the data to the database.

A function was developed in plpgSQL to extract only the
routes that begin and end in the UK. This function definition
can be found in the appendix section “SQL function and
function execution code for extracting UK only routes from
openflights data”. The execution code is listed here:

SELECT * FROM
subset_openflights_routes_by_country('openflights_routes','openflights_ai
rports_uk_only', 'openflights_routes_uk_only') f(airline char(4), airlineid
integer, source_airport char(4), source_airport_id integer,
destination_airport char(4), destination_airport_id integer, codeshare
char(2), stops float, equipment char(44), source_airport_geom geometry,
destination_airport_geom geometry, source_destination_route_geom
geometry);

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

openflights_routes_uk_only_osgb36

The following SQL converts the table
openflights_airports_uk_only to use British National Grid
coordinates;

DROP TABLE IF EXISTS openflights_routes_uk_only_OSGB36;

CREATE TABLE openflights_routes_uk_only_OSGB36 AS SELECT * FROM
openflights_routes_uk_only;

ALTER TABLE openflights_routes_uk_only_0OSGB36 ADD COLUMN
source_destination_route_geom_36 geometry;

ALTER TABLE openflights_routes_uk_only_0OSGB36 ADD COLUMN
source_airport_geom_36 geometry;

ALTER TABLE openflights_routes_uk_only_0OSGB36 ADD COLUMN
destination_airport_geom_36 geometry;

UPDATE openflights_routes_uk_only_OSGB36 SET
source_destination_route_geom_36 =
ST_Transform(ST_SetSRID(source_destination_route_geom, 4326), 27700);
UPDATE openflights_routes_uk_only_OSGB36 SET
source_airport_geom_36 =
ST_Transform(ST_SetSRID(source_airport_geom, 4326), 27700);

UPDATE openflights_routes_uk_only_OSGB36 SET
destination_airport_geom_36 =
ST_Transform(ST_SetSRID(destination_airport_geom, 4326), 27700);

ALTER TABLE openflights_routes_uk_only_OSGB36 DROP COLUMN
source_destination_route_geom;

ALTER TABLE openflights_routes_uk_only_OSGB36 RENAME COLUMN
source_destination_route_geom_36 TO source_destination_route_geom;

ALTER TABLE openflights_routes_uk_only_OSGB36 DROP COLUMN
source_airport_geom;

ALTER TABLE openflights_routes_uk_only_OSGB36 RENAME COLUMN
source_airport_geom_36 TO source_airport_geom;

ALTER TABLE openflights_routes_uk_only_0OSGB36 DROP COLUMN
destination_airport_geom;

ALTER TABLE openflights_routes_uk_only_OSGB36 RENAME COLUMN
destination_airport_geom_36 TO destination_airport_geom;

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_geotype_source_airport_geom CHECK
(geometrytype(source_airport_geom) = 'POINT'"::text OR
source_airport_geom IS NULL);

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_dims_source_airport_geom CHECK
(st_ndims(source_airport_geom) = 2);

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_srid_source_airport_geom CHECK (st_srid(source_airport_geom) =
27700);

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_geotype_destination_airport_geom CHECK
(geometrytype(destination_airport_geom) = 'POINT"::text OR
destination_airport_geom IS NULL);

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_dims_destination_airport_geom CHECK
(st_ndims(destination_airport_geom) = 2);

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_srid_destination_airport_geom CHECK
(st_srid(destination_airport_geom) = 27700);

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_geotype_source_destination_route_geom CHECK
(geometrytype(source_destination_route_geom) = 'LINESTRING'::text OR
source_destination_route_geom IS NULL);

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_dims_source_destination_route_geom CHECK
(st_ndims(source_destination_route_geom) = 2);

ALTER TABLE openflights_routes_uk_only_OSGB36 ADD CONSTRAINT
enforce_srid_source_destination_route_geom CHECK
(st_srid(source_destination_route_geom) = 27700);

DROP INDEX IF EXISTS openflights_routes_uk_only_OSGB36_geom_gist;
CREATE INDEX openflights_routes_uk_only_OSGB36_geom_gist ON
openflights_routes_uk_only_OSGB36 USING gist(source_airport_geom);

DROP INDEX IF EXISTS openflights_routes_uk_only_OSGB36_geom_gist;
CREATE INDEX openflights_routes_uk_only_OSGB36_geom_gist ON
openflights_routes_uk_only_OSGB36 USING
gist(destination_airport_geom);

DROP INDEX IF EXISTS openflights_routes_uk_only_OSGB36_geom_gist;
CREATE INDEX openflights_routes_uk_only_OSGB36_geom_gist ON
openflights_routes_uk_only_OSGB36 USING
gist(source_destination_route_geom);

Figure 16 - processing and upload procedures for transport data

ITRC

Ordnance Survey Points of Interest

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

POI_Categories
POI_Classifications
POl_Groups
POI_Categories_v31
POI_Classes_v31
POIl_Groups_v31

These tables were created using FME Workbench. A
Microsoft Access feature type reader was used to read the
input tables from a Microsoft Access database, then a
Postgres feature writer was used to write the data to the
database.

Points_of_interest

This data was originally supplied by the Ordnance Survey for
the North West region only, as a .csv file. The data was
loaded in to the “points of interest” database using FME
Workbench. A CSV reader was used to read the input data,
whilst a PostGIS writer was used to write the data to the
database.

The original csv file stored the coordinates of each point of
interest in the attributes “ITN_Easting”, and “ITN_Northing”.
To convert these attributes to a point geometry within FME, a
2DPointReplacer Transformer was used. This assigns the
ITN_Easting attribute as the X component, and ITN_Northing
attribute as the Y component. Further information can be
found here:
http://docs.safe.com/fme/2010/htm|/FME_Transformers/co
ntent/transformers/2dpointreplacer.htm.

Derived_poi_electrical_features
Derived_poi_energy production
Derived_poi_fuel_distributors_suppliers
Derived_poi_gas_features
Derived_poi_london_underground_entrances
Derived_poi_oil_gas_extraction_refine_manufactur
e

Derived_poi_pipelines
Derived_poi_railway_stations_junctions_halts
Derived_poi_recycling_centres
Derived_poi_refuse_disposal_facilities
Derived_poi_signalling_facilities
Derived_poi_underground_network_stations
Derived_poi_waste_storage_processing_disposal
Derived_poi_waste_storage_processing_disposal_se
wage_features
Derived_poi_waste_storage_processing_disposal_sl
udge_features
Derived_poi_waste_storage_processing_disposal
_slurry_features

These derived data tables were generated by filtering the
“Points_of _interest” data table using the
pointx_classification_code attribute, and varying the value to
extract the different feature types:

e.g.
DROP TABLE IF EXISTS derived_poi_electrical_features;

CREATE TABLE derived_poi_electrical_features AS SELECT * FROM
points_of_interest WHERE pointx_classification_code ='06340433";

ALTER TABLE derived_poi_electrical_features ADD CONSTRAINT
"enforce_srid_geom" CHECK (st_srid(geom) = 27700);

ALTER TABLE derived_poi_electrical_features ADD CONSTRAINT
"enforce_geotype_geom" CHECK (geometrytype(geom) = 'POINT"::text OR
geom IS NULL);

ALTER TABLE derived_poi_electrical_features ADD CONSTRAINT
"enforce_dims_gemo" CHECK (st_ndims(geom) = 2);

Electrical_features = 06340433

Energy Production = 07410534

Fuel Distributors_Suppliers = 09480766
Gas_Features = 06340437
London_Underground_Entrances = 10570794
Oil_Gas_Extraction_Refine_Manufacture = 07380501
Pipelines = 07410538

Railway, Stations, Junctions, Halts = 10570738
Recycling Centres = 06340462

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

Refuse Disposal Facilities = 06340440

Signalling Facilities = 10540740

Underground network stations = 10570761

Waste Storage Processing Disposal (All) = 06340441

In order to produce the filtered waste storage processing and
disposal tables for sewage, sludge and slurry respectively, a
SQL filter was applied e.g.

CREATE TABLE
derived_poi_waste_storage_processing_disposal_sewage_features AS
SELECT * FROM derived_poi_waste_storage_processing_disposal WHERE
name ILIKE '%sew%';

CREATE TABLE
derived_poi_waste_storage_processing_disposal_slurry_features AS
SELECT * FROM derived_poi_waste_storage_processing_disposal WHERE
name ILIKE '%slur%';

CREATE TABLE
derived_poi_waste_storage_processing_disposal_sludge_features AS
SELECT * FROM derived_poi_waste_storage_processing_disposal WHERE
name ILIKE '%slud%';

Figure 17 - processing and upload procedures for Ordnance Survey Points of Interest data (North West coverage only)

ITRC

Ordnance Survey Vectormap District

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

AdministrativeBoundary
Airport

Building
ElectricityTransmissionLine
Foreshore
Glasshouse
HeritageSite

Land
Motorwaylunction
NamedPlace
Ornament
PublicAmenity
RailwayStation
RailwayTrack
RailwayTunnel
Road

RoadTunnel
Spotheight
SurfaceWater_Area
SurfaceWater_Line
TidalBoundary
TidalWater
Woodland

The Ordnance Survey Vectormap District data was supplied
as a series of ESRI Shapefiles, split up by feature type, and
then subsequently by which 100km National Grid tile. For
example for the NS tile, a separate shapefile per feature type
exists, provided that a feature of that type lies within that
tile.

NS_AdministrativeBoundary
NS_Airport
NS_Building
NS_ElectricityTransmissionLine
NS_Foreshore
NS_Glasshouse
NS_HeritageSite

NS Land
NS_Motorwaylunction
NS_NamedPlace
NS_Ornament
NS_PublicAmenity
NS_RailwayStation
NS_RailwayTrack
NS_RailwayTunnel
NS_Spotheight
NS_SurfaceWater_Area
NS_SurfaceWater_Line
NS_TidalBoundary
NS_TidalWater
NS_Woodland

The data was organised on file system into folders
representing the different feature types, for all tiles. By
organising the data like this, it was possible to use FME
Workbench to read all the shapefiles, for all tiles from a
particular feature type folder, as a single feature type.
Subsequently a PostGIS writer feature type was used to write
each feature type to the database as a separate table.

A single table per feature type exists in the database.

No processing on the data was performed prior to uploading
the data to the database.

Figure 18 - processing and upload procedure for Ordnance Survey Vectormap District data

ITRC

Ordnance Survey MasterMap

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

Table prefix/table name

Process Description

AddressPoint
BoundarylLine
FerryLink

FerryNode
FerryTerminal
InformationPoint
Road

RoadLink
RoadLinkinformation
RoadNode
RoadNodelnformation
RoadRoutelnformation
TopographicArea
TopographiclLine
TopographicPoint

The Ordnance Survey MasterMap data was supplied in
Geographic MarkUp Language (GML) format, on a series of 12
DVDs.

Disc by disc FME to PostGIS

Each disc of data was loaded in to the database separately
using FME Workbench. A GML Feature Type reader was used
to read each disc of data, and a subsequent PostGIS Feature
Type writer was then used to write the data to the database.

Each feature type was prefixed with the name of the disc
from which it came e.g.

Discl_AddressPoint — stores all AddressPoint data from Disc 1

A separate FME Workbench workspace was created for each
disc of data to be uploaded.

Once uploaded, the different feature types of data were
combined to produce a single table of data for that particular
feature type e.g.

CREATE TABLE "AddressPoint" AS

SELECT * FROM "Disc1_AddressPoint" UNION ALL
SELECT * FROM "Disc2_AddressPoint" UNION ALL
SELECT * FROM "Disc3_sd_AddressPoint" UNION ALL
SELECT * FROM "Disc4_se_AddressPoint" UNION ALL
SELECT * FROM "Disc5_se_AddressPoint" UNION ALL
SELECT * FROM "Disc6_se_AddressPoint" UNION ALL
SELECT * FROM "Disc6_sj_AddressPoint" UNION ALL
SELECT * FROM "Disc7_sj_AddressPoint" UNION ALL
SELECT * FROM "Disc8_sj_AddressPoint" UNION ALL
SELECT * FROM "Disc9_sj_AddressPoint" UNION ALL
SELECT * FROM "Disc10_sj_AddressPoint" UNION ALL
SELECT * FROM "Disc10_sk_AddressPoint" UNION ALL
SELECT * FROM "Disc11_sk_AddressPoint" UNION ALL
SELECT * FROM "Disc12_sk_AddressPoint"

ALTER TABLE "AddressPoint" ADD CONSTRAINT enforce_dims_geom CHECK
(st_ndims(geom) = 2);

ALTER TABLE "AddressPoint" ADD CONSTRAINT enforce_srid_geom CHECK
(st_srid(geom) = 27700);

CREATE INDEX "AddressPoint_geom_ind" ON "AddressPoint" USING gist
(geom);

Figure 19 - processing and upload procedure overview for North West coverage of Ordnance Survey MasterMap data

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

Appendix:

pIpgSQL function code for ws2_build_od_table

CREATE OR REPLACE FUNCTION ws2_build_od_table(character varying, character varying, character varying, integer, character varying)
RETURNS integer AS

$BODYS

DECLARE

--table containing zones / boundaries (must contain ZoneCode and ZoneName columns)
zone_table_name ALIAS for $1;

origin_zone_table_record RECORD;

destination_zone_table_record RECORD;

--table containing zone centroids and nearest feature geometry (must contain the following columns)
--id serial/integer

--"name" text/char var

--"ZoneCode" unique code per zone

--distance - distance between zone centroid and feature of interest

--feature_geom - feature geometry

--centroid_geom - geometry of centroid of zone

--nearest_feature_to_centroid_line - line geometry linking feature_geom and centroid_geom
nearest_feature_to_zone_centroid_table_to_query ALIAS for $2;
origin_nearest_feature_record RECORD;

destination_nearest_feature_record RECORD;

--table containing origin and destination passenger counts
--must have first column as origin, with origins listed
--column names are destinations

travel_to_work_table ALIAS for $3;

--srid
srid ALIAS for $4;

--output table
output_table_name ALIAS for $5;

od_table_row_count integer := 0;

origin_zone_code character varying :="';
origin_zone_name character varying :=";

origin_nearest_feature_name character varying :=";
origin_nearest_feature_zonecode character varying :=";
origin_distance_to_nearest_feature_from_zone_centroid double precision := 0.0;
origin_feature_geom text :=";

origin_zone_centroid_geom text :=";
origin_nearest_feature_to_centroid_line_geom text :="};

destination_zone_code character varying := "'
destination_zone_name character varying :=";

destination_nearest_feature_name character varying := ";
destination_nearest_feature_zonecode character varying :=";
destination_distance_to_nearest_feature_from_zone_centroid double precision := 0.0;
destination_feature_geom text :=";

destination_zone_centroid_geom text :=";
destination_nearest_feature_to_centroid_line_geom text :=";

passenger_count integer := 0;
BEGIN

--drop output table

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

EXECUTE 'DROP TABLE IF EXISTS '| | quote_ident(output_table_name);

--create result table

EXECUTE 'CREATE TABLE '| |quote_ident(output_table_name)| |' (id serial NOT NULL, "Origin_Feature_Name" character varying,
"Origin_Zone_Name" character varying, "Origin_Zone_Code" character varying, "Origin_Feature_To_Zone_Centroid_Distance" double
precision, "Destination_Feature_Name" character varying, "Destination_Zone_Name" character varying, "Destination_Zone_Code" character
varying, "Destination_Feature_To_Zone_Centroid_Distance" double precision, "Origin_Feature_geom" geometry, "Origin_Zone_geom"
geometry, "Origin_Feature_To_Zone_Centroid_geom" geometry, "Destination_Feature_geom" geometry, "Destination_Zone_geom"
geometry, "Destination_Feature_To_Zone_Centroid_geom" geometry, "JTW_Count" integer)’;

--loop origin zones
FOR origin_zone_table_record IN EXECUTE 'SELECT "ZoneCode", "ZoneName" FROM '| | quote_ident(zone_table_name)| |' ORDER BY
"ZoneCode", "ZoneName"' LOOP

--set origin zone code and names
origin_zone_code := origin_zone_table_record."ZoneCode";
origin_zone_name := origin_zone_table_record."ZoneName";

--check for null origin zones

IF ((origin_zone_code IS NULL OR origin_zone_code = ") OR (origin_zone_name IS NULL OR origin_zone_name =")) THEN
RAISE NOTICE 'EMPTY ORIGIN ZONE';
CONTINUE;

END IF;

--check for apostrophe in zonecode
IF strpos(origin_zone_code, "'") > -1 THEN
origin_zone_code := replace(origin_zone_code, """, """)

’

END IF;

--check for apostrophe in zonename
IF strpos(origin_zone_name, ""') > -1 THEN
origin_zone_name := replace(origin_zone_name, """, """);

END IF;

--loop origin features

FOR origin_nearest_feature_record IN EXECUTE 'SELECT "name" as origin_nearest_feature_name, "ZoneCode" as
"ZoneCode", distance as origin_distance_to_nearest_feature_from_zone_centroid, ST_AsText(feature_geom) as origin_feature_geom,
ST_AsText(centroid_geom) as origin_zone_centroid_geom, ST_AsText(nearest_feature_to_centroid_line_geom as
origin_nearest_feature_to_centroid_line_geom FROM '| | quote_ident(nearest_feature_to_zone_centroid_table_to_query)||' WHERE
"ZoneCode" ="'| |quote_literal(origin_zone_code)| |' ORDER BY "ZoneCode"' LOOP

--set origin feature attributes

origin_nearest_feature_name := origin_nearest_feature_record.origin_nearest_feature_name;

origin_nearest_feature_zonecode := origin_nearest_feature_record."ZoneCode";

origin_distance_to_nearest_feature_from_zone_centroid :=
origin_nearest_feature_record.origin_distance_to_nearest_feature_from_zone_centroid;

origin_feature_geom := origin_nearest_feature_record.origin_feature_geom;

origin_zone_centroid_geom := origin_nearest_feature_record.origin_zone_centroid_geom;

origin_nearest_feature_to_centroid_line_geom :=
origin_nearest_feature_record.origin_nearest_feature_to_centroid_line_geom;

--check if origin feature is empty or null
IF ((origin_nearest_feature_name IS NULL) OR (origin_nearest_feature_name = ")) THEN

RAISE NOTICE 'EMPTY ORIGIN FEATURE';
CONTINUE;
END IF;

--check if origin distance is null or empty
IF ((origin_distance_to_nearest_feature_from_zone_centroid IS NULL) or
(origin_distance_to_nearest_feature_from_zone_centroid = ")) THEN
origin_distance_to_nearest_feature_from_zone_centroid := 0;
END IF;

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

--check if origin feature name has
IF strpos(origin_nearest_feature_name, ""') > -1 THEN

origin_nearest_feature_name := replace(origin_nearest_feature_name, """, """");
END IF;

--loop destination zones
FOR destination_zone_table_record IN EXECUTE 'SELECT "ZoneCode", "ZoneName" FROM
'| |quote_ident(zone_table_name)| |' ORDER BY "ZoneCode", "ZoneName"' LOOP

--set destination zone code and name
destination_zone_code := destination_zone_table_record."ZoneCode";
destination_zone_name := destination_zone_table_record."ZoneName";

--check for null destination code and names
IF ((destination_zone_code IS NULL OR destination_zone_code =") OR (destination_zone_name IS
NULL OR destination_zone_name = ")) THEN
RAISE NOTICE 'EMPTY DESTINATION ZONE";
CONTINUE;
END IF;

--check for apostrophe in zonecode
IF strpos(destination_zone_code, ") > -1 THEN

destination_zone_code := replace(destination_zone_code, """, """);
END IF;

--check for apostrophe in zonename
IF strpos(destination_zone_name, ""') > -1 THEN

destination_zone_name := replace(destination_zone_name, """, """);
END IF;

--loop destination features

FOR destination_nearest_feature_record IN EXECUTE 'SELECT "name" as
destination_nearest_feature_name, "ZoneCode" as "ZoneCode", distance as destination_distance_to_nearest_feature_from_zone_centroid,
ST_AsText(feature_geom) as destination_feature_geom, ST_AsText(centroid_geom) as destination_zone_centroid_geom,
ST_AsText(nearest_feature_to_centroid_line_geom) as destination_nearest_feature_to_centroid_line_geom FROM
'| |quote_ident(nearest_feature_to_zone_centroid_table_to_query)||' WHERE "ZoneCode" ="'| |quote_literal(destination_zone_code)| |'
ORDER BY "ZoneCode"' LOOP

--set destination feature attributes

destination_nearest_feature_name :=
destination_nearest_feature_record.destination_nearest_feature_name;

destination_nearest_feature_zonecode := destination_nearest_feature_record."ZoneCode";

destination_distance_to_nearest_feature_from_zone_centroid :=
destination_nearest_feature_record.destination_distance_to_nearest_feature_from_zone_centroid;

destination_feature_geom :=
destination_nearest_feature_record.destination_feature_geom;

destination_zone_centroid_geom :=
destination_nearest_feature_record.destination_zone_centroid_geom;

destination_nearest_feature_to_centroid_line_geom :=
destination_nearest_feature_record.destination_nearest_feature_to_centroid_line_geom;

--check if destination feature is empty or null
IF ((destination_nearest_feature_name IS NULL) OR (destination_nearest_feature_name ="))
THEN
RAISE NOTICE 'EMPTY DESTINATION FEATURE';
CONTINUE;
END IF;

--check if destination distance is null or empty
IF ((destination_distance_to_nearest_feature_from_zone_centroid IS NULL) or
(destination_distance_to_nearest_feature_from_zone_centroid = ")) THEN
destination_distance_to_nearest_feature_from_zone_centroid := 0;

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

END IF;

--check if destination feature name has """

IF strpos(destination_nearest_feature_name, ""') > -1 THEN
destination_nearest_feature_name := replace(destination_nearest_feature_name,

mn nuu),
’ ’

END IF;

--set passenger count
EXECUTE 'SELECT '| | quote_ident(destination_zone_code)| |' FROM
'| |quote_ident(travel_to_work_table)| |' WHERE "Origin" ="'| | quote_literal(origin_zone_code) INTO passenger_count;

--insert into output table

EXECUTE 'INSERT INTO '| | quote_ident(output_table_name)||' ("Origin_Feature_Name",
"Origin_Zone_Name", "Origin_Zone_Code", "Origin_Feature_To_Zone_Centroid_Distance", "Destination_Feature_Name",
"Destination_Zone_Name", "Destination_Zone_Code", "Destination_Feature_To_Zone_Centroid_Distance", "Origin_Feature_geom",
"Origin_Zone_geom", "Origin_Feature_To_Zone_Centroid_geom", "Destination_Feature_geom", "Destination_Zone_geom",
"Destination_Feature_To_Zone_Centroid_geom", "JTW_Count") VALUES ('| | quote_literal(origin_nearest_feature_name)| |,
'| |quote_literal(origin_zone_name)| |','| |quote_literal(origin_zone_code)||','| | origin_distance_to_nearest_feature_from_zone_centroid| |','
| |quote_literal(destination_nearest_feature_name)||','| | quote_literal(destination_zone_name)| |','| |quote_literal(destination_zone_code)|
|",'| | destination_distance_to_nearest_feature_from_zone_centroid| |', ST_GeomFromText('| | quote_literal(origin_feature_geom)||’,
'||srid]|'), ST_GeomFromText('| | quote_literal(origin_zone_centroid_geom)||','| |srid| "),
ST_GeomFromText('| | quote_literal(origin_nearest_feature_to_centroid_line_geom)||','| |srid]||'),
ST_GeomFromText('| | quote_literal(destination_feature_geom)||','| |srid]||'),
ST_GeomFromText('| | quote_literal(destination_zone_centroid_geom)||','| |srid]| |"),
ST_GeomFromText('| | quote_literal(destination_nearest_feature_to_centroid_line_geom)||','| |srid]||'), '| | passenger_count]||')";

END LOOP;
END LOOP;
END LOOP;
END LOOP;
EXECUTE 'SELECT COUNT(*) FROM '| | quote_ident(output_table_name) INTO od_table_row_count;

--geometry column contraints (origin_feature_geom, origin_zone_geom, origin_feature_to_zone_centroid_geom,
destination_feature_geom, destination_zone_geom, destination_feature_to_zone_centroid_geom

--dims

--origin

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_origin_feature_geom CHECK
(st_ndims(origin_feature_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_origin_zone_geom CHECK
(st_ndims(origin_zone_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_dims_origin_feature_to_zone_centroid_geom CHECK (st_ndims(origin_feature_to_zone_centroid_geom) = 2)';

--destination

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_destination_feature_geom CHECK
(st_ndims(destination_feature_geom) = 2)';

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT enforce_dims_destination_zone_geom CHECK
(st_ndims(destination_zone_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_dims_destination_feature_to_zone_centroid_geom CHECK (st_ndims(destination_feature_to_zone_centroid_geom) = 2)’;

--geotype

--origin

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_geotype_origin_feature_geom CHECK
(geometrytype(origin_feature_geom) = "POINT"::text OR origin_feature_geom IS NULL)';

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT enforce_geotype_origin_zone_geom CHECK

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

(geometrytype(origin_zone_geom) = "POINT"::text OR origin_zone_geom IS NULL)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_geotype_origin_feature_to_zone_centroid_geom CHECK (geometrytype(origin_feature_to_zone_centroid_geom) =
"LINESTRING"::text OR origin_feature_to_zone_centroid_geom IS NULL)';

--destination

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_geotype_destination_feature_geom
CHECK (geometrytype(destination_feature_geom) = "POINT"::text OR destination_feature_geom IS NULL)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_geotype_destination_zone_geom CHECK
(geometrytype(destination_zone_geom) = "POINT"::text OR destination_zone_geom IS NULL)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_geotype_destination_feature_to_zone_centroid_geom CHECK (geometrytype(destination_feature_to_zone_centroid_geom) =
"LINESTRING"::text OR destination_feature_to_zone_centroid_geom IS NULL)";

--srid

--origin

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_origin_feature_geom CHECK
(st_srid(origin_feature_geom) ="| |srid| |");

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_origin_zone_geom CHECK
(st_srid(origin_zone_geom) ="'| |srid||')";

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_srid_origin_feature_to_zone_centroid_geom CHECK (st_srid(origin_feature_to_zone_centroid_geom) ="| |srid||");

--destination

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_destination_feature_geom CHECK
(st_srid(destination_feature_geom) ="| |srid| |")’;

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT enforce_srid_destination_zone_geom CHECK
(st_srid(destination_zone_geom) ="'| |srid||')’;

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_srid_destination_feature_to_zone_centroid_geom CHECK (st_srid(destination_feature_to_zone_centroid_geom) ="| |srid]| |")’;

RETURN od_table_row_count;

END;
$BODYS
LANGUAGE plpgsql VOLATILE
COST 100;
ALTER FUNCTION ws2_build_od_table(character varying, character varying, character varying, integer, character varying) OWNER TO postgres;

Figure 20 - plpgSQL function code to build an origin-destination table, creating an output table containing both the origin zone and origin
feature, as well as the destination zone and the destination feature

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

plpgSQL function code for ws2_nearest_feature_to_centroid

CREATE OR REPLACE FUNCTION ws2_nearest_feature_to_centroid(character varying, character varying, character varying, character varying,
character varying, character varying, integer, character varying)
RETURNS character varying AS
$BODYS
DECLARE
--name of table containing centroids of districts/wards/government office regions
centroid_table_name ALIAS for $1;
--name of column in centroid_table_name containing centroids of regions
centroid_geometry_column_name ALIAS for $2;
--distinct column name of centroid table to uniquely identify each (returned in output table as "ZoneCode")
centroid_distinct_column_name ALIAS for $3;

--name of table containing features, of which one will be selected as "nearest"
feature_table_name ALIAS for $4;

--name of column in feature_table_name containing POINT/LINESTRING/POLYGON features of interest
feature_geometry_column_name ALIAS for $5;

feature_geometry_type character varying;

feature_dims integer := 0;

--distinct column name of feature table to uniquely identify each (returned in output table as "name")
feature_distinct_column_name ALIAS for $6;

--srid code of output table geometry
srid ALIAS for $7;

--name for generated output table
output_table_name ALIAS for $8;

centroid_feature_line text;
centroid_table_record RECORD;
result_record RECORD;

feature_geom_srid integer := 0;
centroid_geom_srid integer := 0;

BEGIN

--DROP OUTPUT TABLE
EXECUTE 'DROP TABLE IF EXISTS '| | quote_ident(output_table_name);

--CREATE OUTPUT TABLE

EXECUTE 'CREATE TABLE '| |quote_ident(output_table_name)| |' (id serial NOT NULL,
'| |quote_ident(feature_distinct_column_name)| |' text, '| | quote_ident(centroid_distinct_column_name)| |' text, distance double precision,
feature_geom geometry, centroid_geom geometry, nearest_feature_to_centroid_line_geom geometry)';

--define geometry type for features
EXECUTE 'SELECT ST_NDims('| |quote_ident(feature_geometry_column_name)||') FROM '| | quote_ident(feature_table_name) INTO
feature_dims;

--LOOP DISTRICT CENTROID TABLE
FOR centroid_table_record IN EXECUTE 'SELECT DISTINCT('| | quote_ident(centroid_distinct_column_name)| |') as "ZoneCode" FROM
'| |quote_ident(centroid_table_name)||' ORDER BY '| |quote_ident(centroid_distinct_column_name)||' ASC' LOOP

EXECUTE 'SELECT feature.'| |quote_ident(feature_distinct_column_name)||' as "name",
centroid.'| |quote_ident(centroid_distinct_column_name)| |' as "ZoneCode",
st_distance(feature.'| |quote_ident(feature_geometry_column_name)| |', centroid.'| | quote_ident(centroid_geometry_column_name)||') as
distance, ST_AsText(feature.'| |quote_ident(feature_geometry_column_name)||') as feature_geom,
ST_AsText(centroid.'| | quote_ident(centroid_geometry_column_name)| |') as centroid_geom FROM '| | quote_ident(feature_table_name)||'
as feature, '| | quote_ident(centroid_table_name)| |' as centroid WHERE centroid.'| | quote_ident(centroid_distinct_column_name)| |' =
'| |quote_literal(centroid_table_record."ZoneCode")| |' GROUP BY feature.'| | quote_ident(feature_distinct_column_name)| |',
centroid.'| |quote_ident(centroid_distinct_column_name)| |', feature.'| | quote_ident(feature_geometry_column_name)| |,

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

centroid.'| |quote_ident(centroid_geometry_column_name)||' ORDER BY feature.'| |quote_ident(feature_geometry_column_name)||' <->
centroid.'| |quote_ident(centroid_geometry_column_name)||' LIMIT 1' INTO result_record;

IF result_record.centroid_geom !="'NULL' AND result_record.centroid_geom IS NOT NULL THEN

EXECUTE 'SELECT ST_AsText(ST_MakeLine(ST_GeomFromText('| | quote_literal(result_record.centroid_geom)| |,
'||srid]|'),ST_GeomFromText('| |quote_literal(result_record.feature_geom)||','| |srid||')))' INTO centroid_feature_line;

EXECUTE 'INSERT INTO '| | quote_ident(output_table_name)| |
('] |quote_ident(feature_distinct_column_name)| |','| | quote_ident(centroid_distinct_column_name)||', distance, feature_geom,
centroid_geom, nearest_feature_to_centroid_line_geom) VALUES ('| | quote_literal(result_record."name")| |,
'| |quote_literal(result_record."ZoneCode")||', '| | result_record.distance]| |',
ST_GeomFromText('| | quote_literal(result_record.feature_geom)| |, '| |srid||'),
ST_GeomFromText('| |quote_literal(result_record.centroid_geom)| |, '] |srid]||'),
ST_GeomFromText('| | quote_literal(centroid_feature_line)| |, '| |srid]||'));

ELSE

EXECUTE 'INSERT INTO '| | quote_ident(output_table_name)| |
('] |quote_ident(centroid_distinct_column_name)||') VALUES ('| | quote_literal(result_record."ZoneCode")| |');

END IF;

END LOOP;

--ADD CONSTRAINTS ON GEOMETRY COLUMNS

--DIMS

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
'| |quote_ident('enforce_dims_'| | centroid_geometry_column_name)| |' CHECK (st_ndims(centroid_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT nearest_feature_to_centroid_line_geom CHECK
(st_ndims(nearest_feature_to_centroid_line_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
'| |quote_ident('enforce_dims_'| | feature_geometry_column_name)| |' CHECK (st_ndims(feature_geom) ="'| | feature_dims| |')’;

--GEOTYPE

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
'| |quote_ident('enforce_geotype_'| | centroid_geometry_column_name)||' CHECK (geometrytype(centroid_geom) = "POINT"::text OR
centroid_geom IS NULL)";

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_geotype_nearest_feature_to_centroid_line_geom CHECK (geometrytype(nearest_feature_to_centroid_line_geom) =
"LINESTRING"::text OR nearest_feature_to_centroid_line_geom IS NULL)';

--SRID
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
'| |quote_ident('enforce_srid_'| | centroid_geometry_column_name)||' CHECK (st_srid(centroid_geom) ="| |srid]||")";
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_srid_nearest_feature_to_centroid_line_geom CHECK (st_srid(nearest_feature_to_centroid_line_geom) ="| |srid]||')";
EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT
'| |quote_ident('enforce_srid_'| | feature_geometry_column_name)||' CHECK (st_srid(feature_geom) ="| |srid]||")’;

--feature_geom spatial index

EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name]| |'_feature');

EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name]|'_feature')||' ON'| |quote_ident(output_table_name)||' USING
gist(feature_geom)’;

--centroid_geom spatial index

EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name]| |'_centroid');

EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name]||'_centroid')| |' ON'| | quote_ident(output_table_name)||' USING
gist(centroid_geom)';

--nearest_feature_to_centroid_line spatial index
EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name]||'_near_feature_to_centroid');

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name||'_near_feature_to_centroid')| |' ON
'| |quote_ident(output_table_name)||' USING gist(nearest_feature_to_centroid_line_geom)';

RETURN quote_ident(output_table_name);

END;
$BODYS
LANGUAGE plpgsql VOLATILE
COST 100;
ALTER FUNCTION ws2_nearest_feature_to_centroid(character varying, character varying, character varying, character varying, character
varying, character varying, integer, character varying) OWNER TO postgres;

Figure 21 - plpgSQL function code to calculate nearest feature to a zone centroid, whether inside or outside the feature is inside or outside
the given zone geometry

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

plpgSQL function code for ws2_nearest_feature_to_centroid_in_zone

CREATE OR REPLACE FUNCTION ws2_nearest_feature_to_centroid_in_zone(character varying, character varying, character varying, character
varying, character varying, integer, character varying)
RETURNS character varying AS
$BODYS
DECLARE
--table containing features of interest and matched zone boundaries and centroids
features_per_zone_table_name ALIAS for $1;

--geometry column of above table containing the feature geometry of interest
feature_geometry_column_name ALIAS for $2;

--geometry column of above table containing the zone centroid geometry
zone_centroid_geometry_column_name ALIAS for $3;

--column uniquely identifying each feature
feature_unique_column_name ALIAS for $4;

--column uniquely identifying each zone and zone centroid
zone_unique_column_name ALIAS for $5;

--srid of input feature and zone geometries, and output table (must match up)
srid ALIAS for $6;

--name of table to create to store results
output_table_name ALIAS for $7;

--store feature geometry settings
feature_dims integer := 0;
feature_geometry_type text :=";

BEGIN

--set feature geometry settings

EXECUTE 'SELECT ST_NDims('| |quote_ident(feature_geometry_column_name)||') FROM
'| |quote_ident(features_per_zone_table_name) INTO feature_dims;

--EXECUTE 'SELECT GeometryType('| | quote_ident(feature_geometry_column_name)||') FROM
'| |quote_ident(features_per_zone_table_name) INTO feature_geometry_type;

--DROP TABLE
EXECUTE 'DROP TABLE IF EXISTS '| | quote_ident(output_table_name);

--CREATE TABLE

EXECUTE 'CREATE TABLE '| |quote_ident(output_table_name)||' AS SELECT * FROM (WITH A_QUERY AS (SELECT
'| |quote_ident(zone_unique_column_name)| |', min(distance) as min_distance, count(*) as feature_count FROM
'| |quote_ident(features_per_zone_table_name)||' GROUP BY '| | quote_ident(zone_unique_column_name)| |' ORDER BY
'| |quote_ident(zone_unique_column_name)||') SELECT

'| |quote_ident(features_per_zone_table_name)||".'| |quote_ident(feature_unique_column_name)]||'as "name",

'| |quote_ident(features_per_zone_table_name)||'.'| |quote_ident(zone_unique_column_name)||' as "ZoneCode",

'| |quote_ident(features_per_zone_table_name)| |'.distance,

'| |quote_ident(features_per_zone_table_name)||".'| |quote_ident(feature_geometry_column_name)| |' as feature_geom,

'| |quote_ident(features_per_zone_table_name)||'.'| |quote_ident(zone_centroid_geometry_column_name)||' as zone_centroid_geom,

A_QUERY.feature_count FROM '| |quote_ident(features_per_zone_table_name)||', A_QUERY WHERE
'| |quote_ident(features_per_zone_table_name)||'.distance = A_QUERY.min_distance ORDER BY
'| |quote_ident(features_per_zone_table_name)||'.'| |quote_ident(zone_unique_column_name)||') as QUERY";

--add a column to store the line geometry between the closest feature and zone centroid
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD COLUMN nearest_feature_to_centroid_line_geom geometry';

--create a line between the centroid and the nearest station
EXECUTE 'UPDATE '| | quote_ident(output_table_name)||' SET nearest_feature_to_centroid_line_geom =
ST_Makeline('| |quote_ident(feature_geometry_column_name)||','| | quote_ident(zone_centroid_geometry_column_name)||');

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

--feature geometry constraints

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT enforce_dims_feature_geom CHECK
(st_ndims(feature_geom) ="'| |feature_dims]| |");

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_feature_geom CHECK
(st_srid(feature_geom) ="| |srid| |");

--EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT enforce_geotype_feature_geom CHECK
(geometrytype(feature_geom) ="'| | quote_literal(feature_geometry_type)||'::text OR feature_geom IS NULL)';

--zone geometry contraints

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_zone_centroid_geom CHECK
(st_ndims(zone_centroid_geom) = 2)';

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_zone_centroid_geom CHECK
(st_srid(zone_centroid_geom) ="| |srid]||')';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_geotype_zone_centroid_geom CHECK
(geometrytype(zone_centroid_geom) = "POINT"::text OR zone_centroid_geom IS NULL)";

--centroid->feature line geometry contraints

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_dims_nearest_feature_to_centroid_line_geom CHECK (st_ndims(nearest_feature_to_centroid_line_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT
enforce_srid_nearest_feature_to_centroid_line_geom CHECK (st_srid(nearest_feature_to_centroid_line_geom) ="| |srid]||')";

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_geotype_nearest_feature_to_centroid_line_geom CHECK (geometrytype(nearest_feature_to_centroid_line_geom) =
"LINESTRING"::text OR nearest_feature_to_centroid_line_geom IS NULL)';

--sequence
EXECUTE 'DROP SEQUENCE IF EXISTS '| | quote_ident(output_table_name]|'_id_seq');

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD COLUMN "id" INTEGER';

EXECUTE 'CREATE SEQUENCE '| |quote_ident(output_table_name]||'_id_seq');

EXECUTE 'UPDATE '| | quote_ident(output_table_name)||' SET id = nextval("'| | quote_ident(output_table_name||'_id_seq')| |"")";
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ALTER COLUMN "id" SET DEFAULT

| |quote_ident(output_table_name]||'_id_seq')||"")";
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)|
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)]|

nextval(
|" ALTER COLUMN "id" SET NOT NULL";
|' ADD UNIQUE ("id")";

--feature geometry index

EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name]| |'_feature');

EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name]| |'_feature')| |' ON'| |quote_ident(output_table_name)||' USING
gist(feature_geom)’;

--zone centroid geometry index

EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name]||'_zone_centroid');

EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name]||'_zone_centroid')||' ON '| | quote_ident(output_table_name)| |
USING gist(zone_centroid_geom)’;

--nearest feature to centroid line geometry index

EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name| |'_near_feature_to_centroid_geom');

EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name||'_near_feature_to_centroid_geom')||' ON
'| |quote_ident(output_table_name)||' USING gist(nearest_feature_to_centroid_line_geom)';

--zonecode index

EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name| |'_zonecode');

EXECUTE 'CREATE UNIQUE INDEX '| | quote_ident(output_table_name||'_zonecode')||' ON
'| |quote_ident(output_table_name)||'("ZoneCode")";

--name index

EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name]||'_name');

EXECUTE 'CREATE UNIQUE INDEX '| | quote_ident(output_table_name||'_name')||' ON
'| |quote_ident(output_table_name)| |'("name")’;

RETURN quote_ident(output_table_name);

END;

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

$BODYS

LANGUAGE plpgsql VOLATILE

COST 100;
ALTER FUNCTION ws2_nearest_feature_to_centroid_in_zone(character varying, character varying, character varying, character varying,
character varying, integer, character varying) OWNER TO postgres;

Figure 22 - plpgSQL function code to calculate the nearest feature to the centroid of each zone, that lies within that zone

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

plpgSQL function code for ws2_all_features_in_zone

CREATE OR REPLACE FUNCTION ws2_all_features_in_zone(character varying, character varying, character varying, character varying, character
varying, character varying, character varying, integer, character varying)

RETURNS character varying AS

$BODYS

DECLARE

--table containing zones to bound features by
zone_table_name ALIAS for $1;

--geometry column of zone table containing actual zone boundary
zone_boundary_geometry_column_name ALIAS for $2;

--geometry column of zone table containing centroid of actual zone boundary
zone_centroid_geometry_column_name ALIAS for $3;

--column name uniquely identifying each zone
zone_unique_column_name ALIAS for $4;

--table of features
feature_table_name ALIAS for S5;

--geometry column name of feature table
feature_geometry_column_name ALIAS for $6;

--column name uniquely identifying each feature
feature_unique_column_name ALIAS for $7;

--srid for output table
srid ALIAS for $8;

--output table name to create
output_table_name ALIAS for $9;

--feature settings
feature_geometry_type character varying;
--feature_geometry_srid integer := 0;

--zone settings
--zone_boundary_geometry_srid integer := 0;
--zone_centroid_geometry_srid integer := 0;
zone_boundary_geometry_type character varying;
zone_boundary_dims integer := 0;

BEGIN

--DROP OUTPUT TABLE
EXECUTE 'DROP TABLE IF EXISTS '| | quote_ident(output_table_name);

EXECUTE 'CREATE TABLE '| | quote_ident(output_table_name)||' AS SELECT
feature.'| |quote_ident(feature_unique_column_name)||' as "name", zone.'| |quote_ident(zone_unique_column_name)| |' as "ZoneCode",
ST_Distance(feature.'| |quote_ident(feature_geometry_column_name)| |', zone.'| |quote_ident(zone_centroid_geometry_column_name)| |')
as distance, feature.'| |quote_ident(feature_geometry_column_name)| |' as feature_geom,
zone.'| |quote_ident(zone_boundary_geometry_column_name)| |' as zone_boundary_geom,
zone.'| |quote_ident(zone_centroid_geometry_column_name)| |' as zone_centroid_geom FROM '| |quote_ident(feature_table_name)||' as
feature, '| |quote_ident(zone_table_name)||' as zone WHERE ST_Intersects(feature.'| | quote_ident(feature_geometry_column_name)| |,
zone.'| |quote_ident(zone_boundary_geometry_column_name)||');

--constraints on output table (feature geometry)

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_feature_geom CHECK
(st_ndims(feature_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_feature_geom CHECK
(st_srid(feature_geom) ="| |srid| |");

--EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT enforce_geotype_feature_geom CHECK

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

(geometrytype(feature_geom) ="'| | quote_literal(feature_geometry_type)||'::text OR feature_geom IS NULL)';

--constraints on output table (zone boundary geometry)

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_zone_boundary_geom CHECK
(st_ndims(zone_boundary_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_zone_boundary_geom CHECK
(st_srid(zone_boundary_geom) ="| |srid| |");

--EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT enforce_geotype_zone_boundary_geom CHECK
(geometrytype(zone_boundary_geom) ="| |zone_boundary_geometry_type| |'::text OR zone_boundary_geom IS NULL)';

--constraints on output table (zone centroid geometry)

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_zone_centroid_geom CHECK
(st_ndims(zone_centroid_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_zone_centroid_geom CHECK
(st_srid(zone_centroid_geom) ="| |srid]||')';

--EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT enforce_geotype_zone_centroid_geom CHECK
(geometrytype(zone_centroid_geom) = "POINT"::text OR zone_centroid_geom IS NULL)";

--create spatial index

EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name]|'_feature')||' ON '| |quote_ident(output_table_name)||' USING
gist(feature_geom)’;

EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name]|'_centroid')| |' ON'| | quote_ident(output_table_name)||' USING
gist(zone_centroid_geom)’;

EXECUTE 'CREATE INDEX '| | quote_ident(output_table_name||'_boundary')||' ON '| |quote_ident(output_table_name)||' USING
gist(zone_boundary_geom);';

--add a sequence

EXECUTE 'DROP SEQUENCE IF EXISTS '| | quote_ident(output_table_name| |'_id_seq');

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD COLUMN "id" INTEGER';

EXECUTE 'CREATE SEQUENCE '| |quote_ident(output_table_name]||'_id_seq');

EXECUTE 'UPDATE '| | quote_ident(output_table_name)| |' SET id = nextval(''| | quote_ident(output_table_name||'_id_seq')||"")";
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ALTER COLUMN "id" SET DEFAULT

| |quote_ident(output_table_name]||'_id_seq')||"")";

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ALTER COLUMN "id" SET NOT NULL';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD UNIQUE ("id")';

nextval(

--drop zonecode index
EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name| |'_zonecode');

--create zonecode index
EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name||'_zonecode')||' ON
'| |quote_ident(output_table_name)||'("ZoneCode")’;

--drop name index
EXECUTE 'DROP INDEX IF EXISTS '| | quote_ident(output_table_name]||'_name');

--create name index
EXECUTE 'CREATE INDEX '| |quote_ident(output_table_name||'_name')||' ON'| |quote_ident(output_table_name)||'("name")’;

RETURN quote_ident(output_table_name);

END;
$BODYS
LANGUAGE plpgsql VOLATILE
COST 100;
ALTER FUNCTION ws2_all_features_in_zone(character varying, character varying, character varying, character varying, character varying,
character varying, character varying, integer, character varying) OWNER TO postgres;

Figure 23 - plpgSQL function to create a table of all features within each zone

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

plpgSQL function code for ws2_nearest_feature_to_centroid_in_out_zone_table

CREATE OR REPLACE FUNCTION ws2_nearest_feature_to_centroid_in_out_zone_table(character varying, character varying, character varying,
character varying, character varying, character varying, character varying, integer, character varying)

RETURNS character varying AS

$BODYS

DECLARE

--table containing features of interest and matched zone boundaries and centroids
features_per_zone_table_name ALIAS for $1;

--geometry column of above table containing the feature geometry of interest
feature_geometry_column_name ALIAS for $2;

--geometry column of above table containing the zone centroid geometry
zone_centroid_geometry_column_name ALIAS for $3;

--column uniquely identifying each feature
feature_unique_column_name ALIAS for $4;

--column uniquely identifying each zone and zone centroid
zone_unique_column_name ALIAS for $5;

--all zone table name
all_zone_table_name ALIAS for $6;

--feature table
feature_table_name ALIAS for $7;

--srid of input feature and zone geometries, and output table (must match up)
srid ALIAS for $8;

--name of table to create to store results
output_table_name ALIAS for $9;

--store feature geometry settings
feature_dims integer := 0;
feature_geometry_type text :=";

missing_zonecode_record RECORD;

result_record RECORD;

output_table_row_count integer := 0;

feature_table_row_count integer := 0;
BEGIN

--set feature geometry settings
EXECUTE 'SELECT ST_NDims('| |quote_ident(feature_geometry_column_name)||') FROM
'| |quote_ident(features_per_zone_table_name) INTO feature_dims;

--DROP TABLE
EXECUTE 'DROP TABLE IF EXISTS '| | quote_ident(output_table_name);

--calculate a table containing all the zones with the nearest feature in each zone

--CREATE TABLE

EXECUTE 'CREATE TABLE '| |quote_ident(output_table_name)||' AS SELECT * FROM (WITH A_QUERY AS (SELECT
'| |quote_ident(zone_unique_column_name)| |', min(distance) as min_distance, count(*) as feature_count FROM
'| |quote_ident(features_per_zone_table_name)||' GROUP BY '| | quote_ident(zone_unique_column_name)| |' ORDER BY
'| |quote_ident(zone_unique_column_name)||') SELECT

'| |quote_ident(features_per_zone_table_name)| |"."'| |quote_ident(feature_unique_column_name)||' as "name",

'| |quote_ident(features_per_zone_table_name)||'.'| |quote_ident(zone_unique_column_name)||' as "ZoneCode",

'| |quote_ident(features_per_zone_table_name)| |'.distance,

'| |quote_ident(features_per_zone_table_name)||".'| |quote_ident(feature_geometry_column_name)| |' as feature_geom,

'| |quote_ident(features_per_zone_table_name)||'.'| |quote_ident(zone_centroid_geometry_column_name)||' as zone_centroid_geom,

A_QUERY.feature_count FROM '| |quote_ident(features_per_zone_table_name)||', A_QUERY WHERE

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

'| |quote_ident(features_per_zone_table_name)||'.distance = A_QUERY.min_distance ORDER BY
'| |quote_ident(features_per_zone_table_name)||'.'| |quote_ident(zone_unique_column_name)||') as QUERY";

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD COLUMN nearest_feature_to_centroid_line_geom geometry';

--need to extract from table above features_per_zone_table_name all those zones not stored in output_table_name

FOR missing_zonecode_record IN EXECUTE 'SELECT DISTINCT(all_zone_table_name."ZoneCode") FROM
'| |quote_ident(all_zone_table_name)| |' as all_zone_table_name WHERE NOT EXISTS (SELECT * FROM '| | quote_ident(output_table_name)||'
WHERE '| | quote_ident(output_table_name)||'."ZoneCode" = all_zone_table_name.'| |quote_ident(zone_unique_column_name)||')' LOOP

EXECUTE 'SELECT feature.'| |quote_ident(feature_unique_column_name)| |' as "name",
centroid.'| |quote_ident(zone_unique_column_name)| |' as "ZoneCode", st_distance(feature.geom, centroid.centroid_geom) as distance,
ST_AsText(feature.geom) as feature_geom, ST_AsText(centroid.centroid_geom) as centroid_geom FROM
'| |quote_ident(feature_table_name)| |' as feature, '| |quote_ident(all_zone_table_name)||' as centroid WHERE
centroid.'| |quote_ident(zone_unique_column_name)||' ='| | quote_literal(missing_zonecode_record."ZoneCode")| |' GROUP BY
feature.'| | quote_ident(feature_unique_column_name)||', centroid.'| | quote_ident(zone_unique_column_name)||', feature.geom,
centroid.centroid_geom ORDER BY feature.geom <-> centroid.centroid_geom LIMIT 1' INTO result_record;

IF result_record.centroid_geom IS NOT NULL AND result_record.feature_geom IS NOT NULL THEN

EXECUTE 'INSERT INTO '| | quote_ident(output_table_name)||' ("name", "ZoneCode", distance, feature_geom,
zone_centroid_geom, feature_count, nearest_feature_to_centroid_line_geom) VALUES

('] |quote_literal(result_record."name")||','| | quote_literal(result_record."ZoneCode")| |','| | quote_literal(result_record.distance)| |,
ST_GeomFromText('| |quote_literal(result_record.centroid_geom)||','| |srid||'),
ST_GeomFromText('| |quote_literal(result_record.feature_geom)| |','| |srid||'), 1,

ST_Makeline(ST_GeomFromText('| | quote_literal(result_record.centroid_geom)||','| |srid||"),
ST_GeomFromText('| |quote_literal(result_record.feature_geom)| |",'| |srid|[')))";

END IF;
END LOOP;

--add a sequence

EXECUTE 'DROP SEQUENCE IF EXISTS '| | quote_ident(output_table_name| |'_id_seq');

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD COLUMN "id" INTEGER';

EXECUTE 'CREATE SEQUENCE '| |quote_ident(output_table_name]| |'_id_seq');

EXECUTE 'UPDATE '| | quote_ident(output_table_name)||' SET id = nextval("'| | quote_ident(output_table_name||'_id_seq')||")’;
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ALTER COLUMN "id" SET DEFAULT

| |quote_ident(output_table_name]||'_id_seq')||"")";

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ALTER COLUMN "id" SET NOT NULL';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD UNIQUE ("id")";

nextval(

--ADD CONSTRAINTS ON GEOMETRY COLUMNS

--DIMS

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_centroid_geom CHECK
(st_ndims(zone_centroid_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT nearest_feature_to_centroid_line_geom CHECK
(st_ndims(nearest_feature_to_centroid_line_geom) = 2)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_dims_feature_geom CHECK
(st_ndims(feature_geom) ="'| |feature_dims]| |");

--GEOTYPE

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_geotype_centroid_geom CHECK
(geometrytype(zone_centroid_geom) = "POINT"::text OR zone_centroid_geom IS NULL)";

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_geotype_nearest_feature_to_centroid_line_geom CHECK (geometrytype(nearest_feature_to_centroid_line_geom) =
"LINESTRING"::text OR nearest_feature_to_centroid_line_geom IS NULL)';

--SRID
EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT enforce_srid_centroid_geom CHECK
(st_srid(zone_centroid_geom) ="| |srid]||')";

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
enforce_srid_nearest_feature_to_centroid_line_geom CHECK (st_srid(nearest_feature_to_centroid_line_geom) ="| |srid]||")";

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT enforce_srid_feature_geom CHECK
(st_srid(feature_geom) ="| |srid| |");

RETURN quote_ident(output_table_name);

END;
$BODYS
LANGUAGE plpgsql VOLATILE
COST 100;
ALTER FUNCTION ws2_nearest_feature_to_centroid_in_out_zone_table(character varying, character varying, character varying, character
varying, character varying, character varying, character varying, integer, character varying) OWNER TO postgres;

Figure 24 - plpgSQL function to create a table of nearest feature to a zone centroid, beginning by selecting the nearest feature within a
zone, then if no features exist within that zone, finding the nearest.

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

SQL Code and Django links to create Population CDAM value tables:

Table prefix/table name

Process Description

population_population

population_populationfile

population_populationmetaquery

Each of these tables are used to store the results of executing the
demographics CDAM. The tables themselves are defined as
Django models within Python. Once the tables are defined as
Python-based Django models, they are created as “real” tables
within the database by executing the Django management
function “syncdb”

Django models:

https://www.djangoproject.com/
https://docs.djangoproject.com/en/dev/ref/models/fields/
https://docs.djangoproject.com/en/dev/topics/db/models/

Django manage.py syncdb:
https://docs.djangoproject.com/en/dev/ref/django-admin/

However, the tables can be created via execution of the following
sQL:

Population_population:

CREATE TABLE population_population
(
id serial NOT NULL,
file_uuid_id integer NOT NULL,
"year" integer NOT NULL,
gender integer NOT NULL,
category integer NOT NULL,
"location" text NOT NULL,
"value" double precision NOT NULL,

added_on timestamp with time zone NOT NULL,

CONSTRAINT population_population_pkey PRIMARY KEY (id),
CONSTRAINT population_population_file_uuid_id_fkey FOREIGN KEY (file_uuid_id)
REFERENCES population_populationfile (id) MATCH SIMPLE
ON UPDATE NO ACTION ON DELETE NO ACTION DEFERRABLE INITIALLY DEFERRED,
CONSTRAINT population_population_year_check CHECK (year >= 0)

)
WITH (
OIDS=FALSE

);

ALTER TABLE population_population OWNER TO postgres;

Population values added to this table are checked for:

Year - is positive integer (2000-2100)

Gender — is one of Male (0), Female (1), Persons (2)
Category —is one of 0-4 (0), 5-9 (1), 10-14 (2), 15-19 (3), 20-24 (4), 25-29 (5), 30-34 (6), 35-39 (7), 40-44 (8), 45-49
(9), 50-54 (10), 55-59 (11), 60-64 (12), 65-69 (13), 70-74 (14), 75-79 (15), 80-84 (16), 85-89 (17), 90+ (18), births (19),

deaths (20), migration (21), urban density (22)

Location —is one of Scotland, Wales, Northern Ireland, North East, North West, South East, South West, East
Midlands, West Midlands, East of England, Yorkshire and The Humber, Greater London Authority/GLA/London or a

district code value e.g. 00AA

Figure 25 - value table definitions for population CDAM

ITRC

UK Infrastructure Transitions Research Consortium
Derived and Processed Data Report

SQL Code to create Economics CDAM value tables:

Table prefix/table name

Process Description

Economics_economicsemployment
Economics_economicsgva
Economics_economicsenergy
Economics_economicsukco2emissions
Economics_economicsukghgemissions
Economics_economicsukhouseholdexpenditure
Economics_economicsindustryexpenditure
Economics_economicsindustryexports
Economics_economicsindustryimports
Economics_economicsindustryoutputprices
Economics_economicsukinvestment

Each of these tables are used to store the results of executing the
demographics CDAM. The tables themselves are defined as
Django models within Python. Once the tables are defined as
Python-based Django models, they are created as “real” tables
within the database by executing the Django management
function “syncdb”

Django models:

https://www.djangoproject.com/
https://docs.djangoproject.com/en/dev/ref/models/fields/
https://docs.djangoproject.com/en/dev/topics/db/models/

Django manage.py syncdb:
https://docs.djangoproject.com/en/dev/ref/django-admin/

However, the tables can be created via execution of the following
sQL:

Employment:
CREATE TABLE economics_economicsemployment
(

id serial NOT NULL,

file_uuid character varying(40) NOT NULL,

"year" integer NOT NULL,

sector integer NOT NULL,

region integer NOT NULL,

"value" double precision NOT NULL,

added_on timestamp with time zone NOT NULL,

CONSTRAINT economics_economicsemployment_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsemployment_year_check CHECK (year >= 0)

)
WITH (
OIDS=FALSE

);

ALTER TABLE economics_economicsemployment OWNER TO postgres;

Year — is positive integer
Sector —is a value in sectors table
Region —is a value from government_office_regions table

Energy:
CREATE TABLE economics_economicsenergy
(
id serial NOT NULL,
file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
fuel_user integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,

CONSTRAINT economics_economicsenergy_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsenergy_year_check CHECK (year >= 0)

)
WITH (
OIDS=FALSE

);

ALTER TABLE economics_economicsenergy OWNER TO postgres;

Year — is positive integer

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

Fuel_user —is value in fuel_users table

GVA:
CREATE TABLE economics_economicsgva
(
id serial NOT NULL,
file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
sector integer NOT NULL,
region integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsgva_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsgva_year_check CHECK (year >=0)
)
WITH (
OIDS=FALSE
);
ALTER TABLE economics_economicsgva OWNER TO postgres;

Year — is positive integer
Sector —is a value in sectors table
Region —is a region in government_office_regions table

UK C02 Emissions:
CREATE TABLE economics_economicsukco2emissions
(
id serial NOT NULL,
file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
fuel_user integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsukco2emissions_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsukco2emissions_year_check CHECK (year >=0)
)
WITH (
OIDS=FALSE
);

ALTER TABLE economics_economicsukco2emissions OWNER TO postgres;

Year — is positive integer
Fuel_user —is value in fuel_users table

UK GHG Emissions:
CREATE TABLE economics_economicsukghgemissions
(
id serial NOT NULL,
file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
fuel_user integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsukghgemissions_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsukghgemissions_year_check CHECK (year >=0)
)
WITH (
OIDS=FALSE
);
ALTER TABLE economics_economicsukghgemissions OWNER TO postgres;

UK Household Expenditure:
CREATE TABLE economics_economicsukhouseholdexpenditure

(
id serial NOT NULL,

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
consumption_category integer NOT NULL,
region integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsukhouseholdexpenditure_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsukhouseholdexpenditure_year_check CHECK (year >= 0)
)
WITH (
OIDS=FALSE
);
ALTER TABLE economics_economicsukhouseholdexpenditure OWNER TO postgres;

Year — is positive integer
Consumption Category — is one of values stored in consumption_categories table
Region —is a value from government_office_regions table

UK Industry Expenditure:
CREATE TABLE economics_economicsukindustryexpenditure
(
id serial NOT NULL,
file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
sector integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsukindustryexpenditure_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsukindustryexpenditure_year_check CHECK (year >=0)
)
WITH (
OIDS=FALSE
);
ALTER TABLE economics_economicsukindustryexpenditure OWNER TO postgres;

Year — is positive integer
Sector — is one of values stored in sectors table

UK Industry Exports:
CREATE TABLE economics_economicsukindustryexports
(
id serial NOT NULL,
file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
sector integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsukindustryexports_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsukindustryexports_year_check CHECK (year >= 0)
)
WITH (
OIDS=FALSE
);
ALTER TABLE economics_economicsukindustryexports OWNER TO postgres;

Year — is positive integer
Sector — is one of values stored in sectors table

UK Industry Imports:
CREATE TABLE economics_economicsukindustryimports
(

id serial NOT NULL,

file_uuid character varying(40) NOT NULL,

"year" integer NOT NULL,

sector integer NOT NULL,

"value" double precision NOT NULL,

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsukindustryimports_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsukindustryimports_year_check CHECK (year >= 0)
)
WITH (
OIDS=FALSE
);
ALTER TABLE economics_economicsukindustryimports OWNER TO postgres;

Year —is positive integer
Sector — is one of values stored in sectors table

UK Industry Output Prices:
CREATE TABLE economics_economicsukindustryoutputprices
(
id serial NOT NULL,
file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
sector integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsukindustryoutputprices_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsukindustryoutputprices_year_check CHECK (year >= 0)
)
WITH (
OIDS=FALSE
);
ALTER TABLE economics_economicsukindustryoutputprices OWNER TO postgres;

Year —is positive integer
Sector — is one of values stored in sectors table

UK Investment:
CREATE TABLE economics_economicsukinvestment
(
id serial NOT NULL,
file_uuid character varying(40) NOT NULL,
"year" integer NOT NULL,
uk_investing_sector integer NOT NULL,
region integer NOT NULL,
"value" double precision NOT NULL,
added_on timestamp with time zone NOT NULL,
CONSTRAINT economics_economicsukinvestment_pkey PRIMARY KEY (id),
CONSTRAINT economics_economicsukinvestment_year_check CHECK (year >= 0)
)
WITH (
OIDS=FALSE
);
ALTER TABLE economics_economicsukinvestment OWNER TO postgres;

Year —is positive integer
UK_investing_sector — value in uk_investing_sectors_table
Region —is a value from government_office_regions table

Figure 26 - value table definitions for economics CDAM

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

SQL Code for foreign key constraints on European Environment Agency Waste Water Data

--ORIGINAL

ALTER TABLE "UWWTW_T_ReportPeriod" ADD CONSTRAINT "UWWTW _T_ReportPeriod_prkey" PRIMARY KEY (rptmstatekey);

ALTER TABLE "UWWTW_T_Reporter" ADD CONSTRAINT "UWWTW_T_ReportPeriod_frkey_reporter" FOREIGN KEY (rptmstatekey)
REFERENCES "UWWTW_T_Reporter" (rptmstatekey) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION ALTER TABLE
"UWWTW_T_ReportPeriod" ADD CONSTRAINT;

ALTER TABLE "UWWTW_T_Uwwtp_Agglo" ADD CONSTRAINT "UWWTW_T_Uwwtp_Agglo_prkey" PRIMARY KEY (aucid);

ALTER TABLE "UWWTW_T_Uwwtp_Agglo" ADD CONSTRAINT "UWWTW_T_Uwwtp_Agglo_frkey_reporter" FOREIGN KEY (rptmstatekey)
REFERENCES "UWWTW_T_Reporter" (rptmstatekey) MATCH SIMPLE

ON UPDATE NO ACTION ON DELETE NO ACTION;

ALTER TABLE "UWWTW_T_ReceivingAreas" ADD CONSTRAINT "UWWTW_T_ReceivingAreas_prkey" PRIMARY KEY (rcaid);

ALTER TABLE "UWWTW_T_MSLevel" ADD CONSTRAINT "UWWTW_T_MSLevel_prkey" PRIMARY KEY (rptmstatekey);

ALTER TABLE "UWWTW_T_MSLevel" ADD CONSTRAINT "UWWTW_T_MSLevel_frkey_reporter" FOREIGN KEY (rptmstatekey) REFERENCES
"UWWTW_T_Reporter" (rptmstatekey) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

--FEB 2011 Update

ALTER TABLE "UWWTW _Feb2011_T_ReportPeriod" ADD CONSTRAINT "UWWTW _Feb2011_ReportPeriod_prkey" PRIMARY KEY
(rptmstatekey);

ALTER TABLE "UWWTW_Feb2011_T_Reporter" ADD CONSTRAINT "UWWTW_Feb2011_Reporter_prkey" PRIMARY KEY (rptmstatekey);

ALTER TABLE "UWWTW_Feb2011_ReportPeriod" ADD CONSTRAINT "UWWTW_Feb2011_ReportPeriod_frkey_reporter" FOREIGN KEY
(rptmstatekey) REFERENCES "UWWTW_Feb2011_T_Reporter" (rptmstatekey) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;
ALTER TABLE "UWWTW_Feb2011_T_Uwwtp_Agglo" ADD CONSTRAINT "UWWTW _Feb2011_Uwwtp_Agglo_prkey" PRIMARY KEY (aucid);
ALTER TABLE "UWWTW _Feb2011_T_Uwwtp_Agglo" ADD CONSTRAINT "UWWTW_Feb2011_Uwwtp_Agglo_frkey_reporter" FOREIGN KEY
(rptmstatekey) REFERENCES "UWWTW_Feb2011_T_Reporter" (rptmstatekey) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;
ALTER TABLE "UWWTW_Feb2011_T_ReceivingAreas" ADD CONSTRAINT "UWWTW _Feb2011_ReceivingAreas_prkey" PRIMARY KEY (rcaid);
ALTER TABLE "UWWTW _Feb2011_T_ReceivingAreas" ADD CONSTRAINT "UWWTW_Feb2011_Receiving_Areas_frkey_reporter" FOREIGN KEY
(rptmstatekey) REFERENCES "UWWTW_Feb2011_T_Reporter" (rptmstatekey) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;
ALTER TABLE "UWWTW_Feb2011_T_MSLevel" ADD CONSTRAINT "UWWTW_Feb2011_MSLevel_prkey" PRIMARY KEY (rptmstatekey);

ALTER TABLE "UWWTW_Feb2011_T_MSLevel" ADD CONSTRAINT "UWWTW_Feb2011_MSLevel_frkey_reporter" FOREIGN KEY (rptmstatekey)
REFERENCES "UWWTW_Feb2011_T_Reporter" (rptmstatekey) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO ACTION;

--AUG 2012 Update

ALTER TABLE "UWWTW_Aug2012_T_ReportPeriod" ADD CONSTRAINT "UWWTW_Aug2012_T_ReportPeriod_prkey" PRIMARY KEY
("rptMStateKey");

ALTER TABLE "UWWTW_Aug2012_T_Reporter" ADD CONSTRAINT "UWWTW_Aug2012_T_Reporter_prkey" PRIMARY KEY ("rptMStateKey");
ALTER TABLE "UWWTW_Aug2012_T_ReportPeriod" ADD CONSTRAINT "UWWTW_Aug2012_T_ReportPeriod_frkey_reporter" FOREIGN KEY
("rptMStateKey") REFERENCES "UWWTW_Aug2012_T_Reporter" ("rptMStateKey") MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO
ACTION;

ALTER TABLE "UWWTW_Aug2012_T_Uwwtp_Agglo" ADD CONSTRAINT "UWWTW_Aug2012_T_Uwwtp_Agglo_prkey" PRIMARY KEY ("aucID");
ALTER TABLE "UWWTW_Aug2012_T_Uwwtp_Agglo" ADD CONSTRAINT "UWWTW_Aug2012_T_Uwwtp_Agglo_frkey_reporter" FOREIGN KEY
("rptMStateKey") REFERENCES "UWWTW_Aug2012_T_Reporter" ("rptMStateKey") MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO
ACTION;

ALTER TABLE "UWWTW_Aug2012_T_ReceivingAreas" ADD CONSTRAINT "UWWTW_Aug2012_T_ReceivingAreas_prkey" PRIMARY KEY
("rcalD");

ALTER TABLE "UWWTW_Aug2012_T_ReceivingAreas" ADD CONSTRAINT "UWWTW_Aug2012_T_Receiving_Areas_frkey_reporter" FOREIGN
KEY ("rptMStateKey") REFERENCES "UWWTW_Aug2012_T_Reporter" ("rptMStateKey") MATCH SIMPLE ON UPDATE NO ACTION ON DELETE
NO ACTION;

ALTER TABLE "UWWTW_Aug2012_T_MSLevel" ADD CONSTRAINT "UWWTW_Aug2012_T_MSLevel_prkey" PRIMARY KEY ("rptMStateKey");
ALTER TABLE "UWWTW_Aug2012_T_MSLevel" ADD CONSTRAINT "UWWTW_Aug2012_T_MSLevel_frkey_reporter" FOREIGN KEY
("rptMStateKey") REFERENCES "UWWTW_Aug2012_T_Reporter" ("rptMStateKey") MATCH SIMPLE ON UPDATE NO ACTION ON DELETE NO
ACTION;

--Comments (these can be applied to each version i.e. Feb2011, Aug2012)

COMMENT ON TABLE "UWWTW_T_Reporter" IS 'Table provides information on reporting state - (http://www.eea.europa.eu/data-and-
maps/data/waterbase-uwwtd-urban-waste-water-treatment-directive/waterbase-uwwtd)';

COMMENT ON TABLE "UWWTW_T_ReportPeriod" IS 'Table specifies version of reported data and reference year for reporting -
(http://www.eea.europa.eu/data-and-maps/data/waterbase-uwwtd-urban-waste-water-treatment-directive/waterbase-uwwtd)’;
COMMENT ON TABLE "UWWTW_T_ReceivingAreas" IS 'Table summarises information on designated sensitive areas, date of designation, the
purpose of the designation, type of sensitive areas. Moreover, the table specifies which particular article of the UWWTD is applied in regards
to designation of sensitive areas - (http://www.eea.europa.eu/data-and-maps/data/waterbase-uwwtd-urban-waste-water-treatment-

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

directive/waterbase-uwwtd)';

COMMENT ON TABLE "UWWTW_T_MSLevel" IS 'Table summarises aggregated (on MS level) information on the sludge hangling, its discharge
and/or disposal and re-use of treated water - (http://www.eea.europa.eu/data-and-maps/data/waterbase-uwwtd-urban-waste-water-
treatment-directive/waterbase-uwwtd)';

COMMENT ON TABLE "UWWTW_T_DischargePoints_UK_ONLY_OSGB" IS 'Table contains information on individual points of discharge from
treatment plants or collecting systems, localisation of discharge, link to specific treatment plant, type of receiving area into which the
effluent/wastwater is dicharged, related waterbody (or river basin), information on the discharge on land - (http://www.eea.europa.eu/data-
and-maps/data/waterbase-uwwtd-urban-waste-water-treatment-directive/waterbase-uwwtd)';

COMMENT ON TABLE "UWWTW_T_Agglomerations_UK_ONLY_OSGB" IS 'Table contains information on agglomerations with generated load >
2000 P.E., including names, coordinates, generated load and information whether the load generated is collected through collecting system or
addressed via Individual Appropriate Systems (IAS) or not collected not addressed via IAS - (http://www.eea.europa.eu/data-and-
maps/data/waterbase-uwwtd-urban-waste-water-treatment-directive/waterbase-uwwtd)';

COMMENT ON TABLE "UWWTW_T_UWWTPS_UK_ONLY_OSGB" IS 'Table includes data on individual waste water treatment plants and
collecting systems without UWWTP, their localisation, capacity and actual load treated, type of treatment, aggregated data on the
performance of plants - (http://www.eea.europa.eu/data-and-maps/data/waterbase-uwwtd-urban-waste-water-treatment-
directive/waterbase-uwwtd)';

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

plpgSQL function code for extracting country-specific routes from openflights data

--$1 - table name of all routes

--$2 - table name of subsetted airports e.g. UK only airports

CREATE OR REPLACE FUNCTION subset_openflights_routes_by_country(varchar, varchar, varchar)
RETURNS SETOF RECORD AS

$BODYS

DECLARE

--all routes table name
all_route_table_name ALIAS for $1;

--subset table of airports
subset_airport_table_name ALIAS for $2;

--output table name
output_table_name ALIAS for $3;

--record when using all_route_table
all_route_table_record RECORD;

--record when using subset airport table
subset_airport_table_record RECORD;

--to store geometry of source airport
source_geom text;

--to store geometry of destination airport
destination_geom text;

--to store straight line between source and destination airport
route_geom text;

BEGIN

--loop around the airport table, getting each airport ID

--select all records from the all_route table with corresponding ID (source_airport_id) and insert into temporary table

--once complete, loop around the airport table again and delete from the second table all records where the destination id is not UK
airport ID

--the result is a table with only those routes starting and ending at UK airports i.e. UK internal domestic flights (or based upon set of
airports specified as input, as could be from a different country)

--drop the temporary table

EXECUTE 'DROP TABLE IF EXISTS '| | quote_ident(output_table_name);

--create a new temporary table with same structure as all route table

EXECUTE 'CREATE TABLE '| |quote_ident(output_table_name)||' AS SELECT * FROM '| |quote_ident(all_route_table_name);

--remove any records

EXECUTE 'DELETE FROM '| | quote_ident(output_table_name);

--add a geometry column (source airport)

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD COLUMN source_airport_geom geometry';

--add a geometry column (destination airport)

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD COLUMN destination_airport_geom geometry';

--add a geometry column (source->destination route geometry)

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD COLUMN source_destination_route_geom geometry';

--add geometry checks source geom

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT "enforce_srid_source_geom" CHECK
(st_srid(source_airport_geom) = 4326)';

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT "enforce_geotype_source_geom" CHECK
(geometrytype(source_airport_geom) = "POINT"::text OR source_airport_geom IS NULL)';

--add geometry checks destination geom

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT "enforce_srid_destination_geom" CHECK
(st_srid(destination_airport_geom) = 4326)’;

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)| |' ADD CONSTRAINT "enforce_geotype_destination_geom" CHECK
(geometrytype(destination_airport_geom) = "POINT"::text OR destination_airport_geom IS NULL)'";

--add geometry checks source_destination_route geom

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

EXECUTE 'ALTER TABLE '| |quote_ident(output_table_name)||' ADD CONSTRAINT "enforce_srid_source_destination_route_geom"
CHECK (st_srid(source_destination_route_geom) = 4326)";

EXECUTE 'ALTER TABLE '| | quote_ident(output_table_name)||' ADD CONSTRAINT
"enforce_geotype_source_destination_route_geom" CHECK (geometrytype(source_destination_route_geom) = "MULTILINESTRING"::text OR
geometrytype(source_destination_route_geom) = "LINESTRING" OR source_destination_route_geom IS NULL)";

--loop all the airports
FOR subset_airport_table_record IN EXECUTE 'SELECT DISTINCT(airportid) FROM '| | quote_ident(subset_airport_table_name)| |
ORDER BY airportid ASC' LOOP

--loop all the routes with UK as starting airport
IF subset_airport_table_record.airportid IS NOT NULL THEN

FOR all_route_table_record IN EXECUTE 'SELECT * FROM '| | quote_ident(all_route_table_name)||' WHERE
source_airport_id ="'| |subset_airport_table_record.airportid LOOP

--get the source airport geom
EXECUTE 'SELECT ST_AsText(geom) FROM '| | quote_ident(subset_airport_table_name)||' WHERE
airportid ='| |quote_nullable(all_route_table_record.source_airport_id) INTO source_geom;

RAISE NOTICE 'source_geom: %', source_geom;

--get the destination airport geom
EXECUTE 'SELECT ST_AsText(geom) FROM '| | quote_ident(subset_airport_table_name)||' WHERE
airportid ='| |quote_nullable(all_route_table_record.destination_airport_id) INTO destination_geom;

RAISE NOTICE 'destination_geom: %', destination_geom;
IF source_geom IS NOT NULL AND destination_geom IS NULL THEN

EXECUTE 'INSERT INTO '| | quote_ident(output_table_name)||' (airline, airlineid,
source_airport, source_airport_id, destination_airport, destination_airport_id, codeshare, stops, equipment, source_airport_geom) VALUES
('] |quote_nullable(all_route_table_record.airline)||','| | quote_nullable(all_route_table_record.airlineid)||','| |quote_nullable(all_route_table
_record.source_airport)||','| | quote_nullable(all_route_table_record.source_airport_id)||','| |quote_nullable(all_route_table_record.destinati
on_airport)||','| |quote_nullable(all_route_table_record.destination_airport_id)||','| |quote_nullable(all_route_table_record.codeshare)||",'|
|quote_nullable(all_route_table_record.stops)||','| |quote_nullable(all_route_table_record.equipment)||',

ST_GeomFromText('| |quote_literal(source_geom)| |', 4326))';

END IF;
IF destination_geom IS NOT NULL AND source_geom IS NULL THEN

EXECUTE 'INSERT INTO '| | quote_ident(output_table_name)||' (airline, airlineid,
source_airport, source_airport_id, destination_airport, destination_airport_id, codeshare, stops, equipment, destination_airport_geom)
VALUES
('] |quote_nullable(all_route_table_record.airline)||','| | quote_nullable(all_route_table_record.airlineid)||','| | quote_nullable(all_route_table
_record.source_airport)||','| | quote_nullable(all_route_table_record.source_airport_id)||','| |quote_nullable(all_route_table_record.destinati
on_airport)||','| |quote_nullable(all_route_table_record.destination_airport_id)||','| |quote_nullable(all_route_table_record.codeshare)||',’|
| quote_nullable(all_route_table_record.stops)||','| |quote_nullable(all_route_table_record.equipment)||',

ST_GeomFromText('| |quote_literal(destination_geom)| |', 4326))';

END IF;
IF source_geom IS NOT NULL AND destination_geom IS NOT NULL THEN
--create a line for the route between the two airports
EXECUTE 'SELECT
ST_AsText(ST_MakeLine(ST_GeomFromText('| | quote_nullable(source_geom)||', 4326),
ST_GeomFromText('| |quote_nullable(destination_geom)| |', 4326)))' INTO route_geom;

RAISE NOTICE 'route_geom: %', route_geom;

EXECUTE 'INSERT INTO '| | quote_ident(output_table_name)||' (airline, airlineid,

I I R ‘ UK Infrastructure Transitions Research Consortium
> Derived and Processed Data Report

source_airport, source_airport_id, destination_airport, destination_airport_id, codeshare, stops, equipment, source_airport_geom,
destination_airport_geom, source_destination_route_geom) VALUES

('] |quote_nullable(all_route_table_record.airline)||','| | quote_nullable(all_route_table_record.airlineid)||','| | quote_nullable(all_route_table
_record.source_airport)||','| | quote_nullable(all_route_table_record.source_airport_id)||','| |quote_nullable(all_route_table_record.destinati
on_airport)||','| |quote_nullable(all_route_table_record.destination_airport_id)||','| | quote_nullable(all_route_table_record.codeshare)| ||
|quote_nullable(all_route_table_record.stops)||','| |quote_nullable(all_route_table_record.equipment)| |',

ST_GeomFromText('| |quote_literal(source_geom)| |', 4326), ST_GeomFromText('| | quote_literal(destination_geom)| |', 4326),
ST_GeomFromText('| |quote_literal(route_geom)||', 4326))';

END IF;

END LOOP;
END IF;
END LOOP;

--remove records where destination is not in uk airport list i.e. flights starting but leaving the UK
EXECUTE 'DELETE FROM '| | quote_ident(output_table_name)||' WHERE destination_airport_id NOT IN (SELECT DISTINCT (airportid)
as destination_airport_id FROM ' | |quote_ident(subset_airport_table_name)| |' ORDER BY airportid)’;

RETURN QUERY EXECUTE 'SELECT * FROM '| | quote_ident(output_table_name);

END;

$BODYS

LANGUAGE plpgsql VOLATILE

COST 100;

ALTER FUNCTION subset_openflights_routes_by_country(varchar, varchar, varchar) OWNER TO postgres;

Figure 27 - plpgSQL function code to extract country-specific flight routes from openflights data

I I R ‘ UK Infrastructure Transitions Research Consortium
>

Derived and Processed Data Report

pIpgSQL function code for calculate_GOR_centroid_to_boundary_distance for solid waste CDAM

CREATE OR REPLACE FUNCTION calculate_GOR_centroid_to_boundary_distance(text, text, text) RETURNS void AS $BODYS
DECLARE

centroid_table_name ALIAS for $1;
vertex_table_name ALIAS for $2;
output_table_name ALIAS for $3;

centroid_record RECORD;

BEGIN
--delete the output table if it already exists (param 3)
EXECUTE 'DROP TABLE IF EXISTS '| | quote_ident(output_table_name);
--create the output table
EXECUTE 'CREATE TABLE '| |quote_ident(output_table_name)| |' AS SELECT '| | quote_ident(centroid_table_name)| |'.gid'| |',
'| |quote_ident(centroid_table_name)| |'.orig_fid'| |', '| | quote_ident(centroid_table_name)||".in_fid'||',
'| |quote_ident(centroid_table_name)| |'.near_fid'| |', '| | quote_ident(centroid_table_name)| |'.near_dist,
AVG(ST_Distance('| | quote_ident(centroid_table_name)||'.geom, '| |quote_ident(vertex_table_name)||'.geom)) AS "AVG_Vertex_Distance"
FROM '| | quote_ident(centroid_table_name)||', '| |quote_ident(vertex_table_name)||' GROUP BY

'| |quote_ident(centroid_table_name)| |'.gid, '| | quote_ident(centroid_table_name)| | '.orig_fid,
'| |quote_ident(centroid_table_name)| |'.in_fid, '| | quote_ident(centroid_table_name)| |'.near_fid,
'| |quote_ident(centroid_table_name)| |'.near_dist’;

END;

$BODYS

LANGUAGE plpgsql VOLATILE

COST 100;

ALTER FUNCTION calculate_GOR_centroid_to_boundary_distance(text, text, text) OWNER TO postgres;

Figure 28 - plpgSQL function code to calculate average straight line distance between output area centroid and centroid of government
office region with which the output area resides.

