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Abstract

Modern infrastructures such as energy, transport or information and communication

technologies are complex and highly interdependent systems. Modern society and

economy place growing expectations and reliance on them. Failures in infrastructure

systems can affect large parts of the everyday life and inflict significant losses.

This thesis is concerned with reasoning about the dependability of national in-

frastructures. It takes a holistic view of national infrastructure systems and treats

them as an interconnected system-of-systems. The thesis focuses on describing and

analysing failure in such systems-of-systems, especially how it propagates between

systems via infrastructure interdependencies.

The aim is to improve the ability to reason about interdependent infrastructure

systems by reviewing notions and techniques from dependable computing and assess-

ing how they can be applied to national infrastructure systems analysis. The thesis

proposes a framework to describe and reason about complex infrastructure systems.

The framework employs fault-error-failure concepts; emphasises the roles of assump-

tions, boundaries and structure in systems description; uses top-down system view

supplemented with formal techniques. The framework is extended to include the

planning process and humans as systems within the same analysis umbrella.
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Chapter 1

Introduction

Infrastructures such as energy, transport or information and communication tech-

nologies (ICT) have a crucial role in the everyday function of modern society. They

are called critical national infrastructures and have been identified as the backbone

of a modern economy [Tre11]. These systems have gradually grown from separate

services to integrated and highly interdependent system-of-systems.

Infrastructures are built with some redundancy and are quite dependable in nor-

mal conditions. However, the current ageing infrastructure has to face challenges

from growing demand and changing climate conditions, which uncover new vulner-

abilities. Recent events such as floods in Northumberland, UK and other natural

and man-caused disasters had significant negative impact due to interdependencies

between infrastructure systems. This suggests that re-evaluation of current infras-

tructure is needed addressing dependability issues as well as providing opportunities

for research in improving infrastructure efficiency by sharing resources and exploit-

ing ICT potential, changing human behaviour, etc.

Current approaches to addressing issues, investment and planning of infrastruc-

ture systems must be cross-sectoral and include the various links between different

infrastructure systems. Such approaches are being put in motion in government,

academia and industry. The UK government plans announced in 2011 feature cross-

sector investment in infrastructures and include over 500 projects and programmes

worth over £250 billion [Tre11]. Although part of this is expected to be privately

funded, the government aims to set out a high-level strategy for future infrastructure

development.

The long-term strategies for UK future infrastructures will need to plan upgrades

to the ageing UK national infrastructure as well as developing completely new in-

frastructure systems to satisfy needs and improve efficiency in the future for society

1
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and the economy [Cou12, PM1]. Unfortunately, development of long-term strate-

gies for modern interdependent infrastructures faces challenges in lack of mature

approaches to design and analyse such systems. The major difficulties arise from

the complexity of these infrastructure systems as well as from rather limited expe-

rience in cross-sectoral thinking and research. This exposes the need for research

into designing, analysing and evaluating complex interdependent infrastructures in

a holistic way, which has been attempted by numerous research projects in the last

decade.

This thesis is linked with the research programme of the UK Infrastructure

Transitions Research Consortium (ITRC)1. ITRC was established to study long

term infrastructure planning issues. The ITRC research programme aims to inform

analysis, planning and design of national infrastructure, with a focus on interaction

between infrastructures. The expected research outcomes span theory, models and

practical decision support tools to enable strategic analysis and planning of national

infrastructure systems in changing economic, social and natural environments that

might be faced in the future. This thesis aims to contribute to such goals by ex-

ploring techniques for high-level description and analysis of future infrastructure

systems.

Increasing dependence on infrastructure has resulted in increasing demand for

dependability. Significant failures that affect dependability of national infrastruc-

ture arise due to interdependencies between individual infrastructure systems and

can have a major impact, affecting different services throughout interconnected sys-

tems. This thesis is concerned with infrastructure interdependencies and failure

propagation between them.

Some interdependencies of infrastructures are inherent (e.g. ICT requires elec-

tricity to operate and visa versa). Moreover, further interdependencies in modern

infrastructures bring opportunities to achieve major savings and efficiency.2 The

interdependencies, however, come with a price: they add vulnerabilities and thus

affect the dependability of infrastructures. Cascading failures occurring through

links and connections of interdependent infrastructures can cause large costs and

negative effects on a national scale.3

1http://www.itrc.org.uk
2E.g. reuse of the Channel Tunnel to lay electrical inter-connector to Europe would save

£130-180m vs. a new line across the sea bed [Tre11].
3For example, a 2003 electric power blackout in the United States and Canada affected water

supply, transportation and communication sectors with estimated costs of $4-$10 billion [For04].

http://www.itrc.org.uk
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Interdependence analysis is one of the main points of cross-sectoral infrastructure

research. It is usually approached with complex network modelling and simulation

to identify weak links and vulnerable sections of the infrastructure network. The

exercises, however, are often limited in scope by availability of data or size of models.

Furthermore, such an approach favours a bottom-up view and may fail to provide

the full picture. Section 5.2 provides a further overview of the common approaches

and issues.

This thesis investigates how to understand and mitigate the vulnerabilities intro-

duced by system interdependencies and thus achieve better dependability in future

infrastructures. The aim of the thesis, however, is not to improve existing or creat-

ing new simulation techniques, but to provide an alternative approach to describe,

model and analyse infrastructure interdependencies. The approach builds upon the

ideas in dependable computing research, which can be adapted for infrastructure

systems.

Parallels can be easily established between systems-of-systems analysed in com-

puting science research and infrastructure systems. This suggests that the es-

tablished concepts, techniques and practices from dependable computing can be

adapted to describe and analyse national infrastructures. Various software and

hardware computer systems are used in critical environments, such as aeroplane

engine controls, power plant, life support systems, etc. They are often complex

systems with high interconnectivity between their components. However, the crit-

ical environment they are used in requires such systems to be designed with high

assurance and precision to avoid life-threatening failures. Dependability research in

computing science has been concerned with these issues for the last several decades

and has delivered theory and practice for developing such systems, ranging from

theoretical notions and taxonomies of failures to rigorous development using formal

methods and formal verification.

This thesis explores how the theory and practice of dependable computing could

be applied to national infrastructure systems, in particular to the design and analysis

process that concerns with the infrastructure interdependencies. The research is

guided by three hypotheses, which are presented below.

The main hypothesis H1 proposes to adapt concepts from dependable computing

to describing and reasoning about infrastructures.

Hypothesis H1 Established concepts from dependable computing can help us un-

derstand the interdependencies between infrastructure systems and this understand-
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ing can be used to increase the dependability of infrastructures.

Concepts from dependable computing theory, in particular notions notions such

as fault, error and failure, would bring precision to describing failure propagation

between infrastructure systems. Furthermore, clear and precise descriptions provide

a foundation for the design of complex infrastructure systems and reasoning about

their dependability. Chapter 2 re-examines the core dependability definitions in the

context of national infrastructure systems.

Under the umbrella of the H1 hypothesis this thesis explores several approaches

to increasing the dependability of infrastructure systems. A top-down view on

infrastructure system description and development provides a structured way to

tackle complexity and introduce details when necessary for reasoning about system

dependability. This thesis raises the hypothesis that these techniques can be applied

to good effect to national infrastructure systems:

Hypothesis H2 By analysing infrastructure systems from the top-down view, one

can gain a better understanding of interdependencies and failure propagation.

Such an approach benefits from precise identification of assumptions and even

development of a formal specification to establish the context for the dependability

arguments. Chapter 3 brings these and other techniques from computing science,

with the aim to develop a framework to describe, understand and reason about in-

frastructure systems, their interdependencies and failure propagation among others.

Moreover, this research investigates the case when the originating system failure

lies outside the conventional national infrastructures. System faults can be inherited

from the planning and design process, etc. Thesis proposes to expand the scope of

the analysis framework and include the planning process in the analysis as a separate

system. This is covered under the following hypothesis of “systems-generating-

systems” and explored to extent in Chapter 4:

Hypothesis H3 By explicitly studying the concept of a planning system that gives

rise to future (or changes existing) infrastructure systems, we can identify and reduce

latent faults or errors in future infrastructures that could engender failure in those

systems.

These hypotheses set out the scene for the research presented in this thesis. The

main thesis chapters propose a framework to address these hypotheses. Various
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aspects of the framework are detailed, in particular how the dependable computing

concepts would be adapted for infrastructure systems. Furthermore, basic examples

and a high-level case study aims to present applications of the said ideas. These at-

tempt to illustrate the initial steps of how a full size application is to be performed.

Note, however, that a full evaluation and a comparison study with current infras-

tructure analysis techniques is outside the scope of this thesis. Such an evaluation

project is a major undertaking that needs to cover the full development of a new or

analysis of an existing infrastructure system.

1.1 Contributions

The application of dependable computing ideas provides a novel approach to infras-

tructure systems description and analysis. The focus on high-level description and

reasoning is a departure from activities used by current analysis methods, such as

data collection, low-level modelling and simulation.

The thesis adapts dependable computing techniques for infrastructure systems

and provides hints, examples and a case study on how they could be applied and

benefit the analysis. Furthermore, adaptation of some concepts reveals parts of

infrastructure analysis that are overlooked, such as importance of assumptions, re-

lationship of cost to achieved dependability, etc.

The proposed framework is generalised in application to various entities related

to infrastructure systems. Under the concept “everything is a system”, the thesis

extends the application of ideas beyond conventional infrastructure systems. This

includes human operators, which can be treated as a human system to model failures

caused by humans. Furthermore, by considering planning systems within the same

framework, a different dimension of failure propagation is explored: system faults

caused by failures in system design or development.

During the earlier part of the author’s MPhil studies, a technical report on ICT

infrastructure constraints on evolving physical infrastructure [VJ11] was produced.

It contributed to the development of high-level strategies within the ITRC project

as part of the fast-track analysis of current and prospective national infrastruc-

tures [HHHN12].
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1.2 Thesis outline

The remaining chapters are organised as follows. Basic dependability notions from

computing science are adapted to infrastructure systems in Chapter 2. Chapter 3 ar-

gues about the importance of assumptions to system description as well as proposes

a top-down view of infrastructure systems supplemented with (formal) specification.

Chapter 4 extends the framework scope by including planning systems as possible

causes for system faults. An overview of current infrastructure analysis approaches

and related work is provided in Chapter 5. Finally, a simplified case study is at-

tempted in Chapter 6 to illustrate how the main ideas would be applied within

a single reasoning exercise, followed by conclusions and future work directions in

Chapter 7.



Chapter 2

Dependability key concepts

One of the central concepts when talking about system dependability is the no-

tion of system failure. This chapter sets out the basic terminology and notions of

system failure in the field of dependable computing and related areas. The aim

here is to take the underlying ideas and key concepts of dependable computing

and adapt them in the context of national infrastructure systems, as stated in the

H1 hypothesis. These concepts help with understanding and reasoning about failure

and dependability of infrastructure systems. They form the core notions within the

overall reasoning framework proposed in this thesis.

This chapter explores several of the main areas of system dependability: describ-

ing and reasoning about failure; the errors and faults that cause failure; consider-

ing human aspects in system dependability; weighing system dependability against

the cost to achieve it. The aim is not to present some new method of improving

system dependability, but to introduce concepts and ideas to describe and reason

about systems, their relationships and dependability. For example, describing sys-

tem boundaries or identifying faults, errors, failures and links of causality does not

improve system dependability by itself, but gives a tool to recognise and improve

upon weak or unaccounted facets of a system or a system-of-system configuration.

The aim of this thesis is to show how to take these concepts, which are being

applied in dependable computing, and adapt them to the context of infrastructure

systems. Some of the current methods used in infrastructure systems are reviewed

in Chapter 5. Chapters 3 and 4 use the notions introduced here in the wider view of

developing or describing a whole system, or even including the development process

itself.

7
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2.1 On systems (of systems)

The notion of system, and in particular, system-of-systems can be used to describe

entities of different complexity and relationships. This thesis adopts an abstract

definition of a system, as formulated in [ALRL04]: a system is an entity that inter-

acts with other entities. Such definition is not concerned with physical properties

of the system or behaviour restrictions—the important feature of a system is its

relationship with other systems, e.g. services it provides and consumes, different

other interdependencies, etc. The abstract definition of the system allows applying

the ideas presented in this thesis to “systems” in different domains of infrastructure,

e.g. physical infrastructure systems, human systems or even treating the process of

infrastructure planning as a system.

A collection of systems that interact together can give rise to some emergent be-

haviour or service. Such collection can thus also be considered a new system, which

consists of other systems. To emphasise the importance of component systems, the

name “system-of-systems” is used within this thesis. Note that in [ALRL04] these

concepts are defined as a system and its component sub-systems. In this thesis,

“system-of-systems” and “system with sub-components” will be used interchange-

ably, but system-of-systems is preferred to emphasise the modularity and internal

relationships between the sub-systems. Furthermore, the ideas presented in this

thesis can be applied recursively and independently to each component system.

Note that such abstract notion of “system-of-systems” is somewhat different and

more permissive than the established definition. The common definition of system-

of-systems requires independence, emergent behaviour and geographic distribution

of its component systems [Mai98]. Most of these requirements are satisfied by sys-

tems within national infrastructure. For example, energy, transport, ICT, water

and waste infrastructure systems are independent in their operation and manage-

ment, they have different evolutionary developments and emergent behaviours. The

geographic distribution appears at different levels of abstraction, e.g. power plants

are distributed within the energy system-of-systems, but the energy system as a

whole is not geographically distributed in regards to the other top-level systems,

e.g. ICT. Therefore, while infrastructure systems analysed in this thesis can satisfy

the established definition of “system-of-systems” at certain levels of abstraction,

in general these requirements are not of importance to the ideas proposed in this

thesis. For this reason, the “system-of-systems” describes a collection of arbitrary
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logical constructs that allow us to modularise a complex structure to accommodate

reasoning and description.

2.2 System dependability

The fundamental concepts in the field of dependable computing are set out by

Avižienis et al. [ALRL04]. This thesis adopts the proposed terminology and nota-

tions, especially the crucial tripartite distinction of a system’s “problem” as fault,

error and failure. These concepts are used throughout the entire discussion in this

thesis about all systems, including computing, infrastructure and others.

Dependability is a very broad concept that encompasses various properties re-

lated to the quality of a system’s service over a period of time. The notion addresses

availability, reliability, safety, integrity and maintainability of a system. This thesis

does not address these specific facets of dependability and instead aims to link de-

pendability to different kinds of failure. For example, instead of talking separately

about how some events would affect a system’s availability or safety, these are in-

stead generalised and included under general notions of failure and dependability.

Dependability defines a system’s ability to deliver its intended1 service to the

user. Note that the user could be another system that relies on the delivery of service

by the first system. Because of the above-mentioned generalisation, this thesis

employs the broader definition linking dependability with failures: dependability is

the system’s ability to avoid service failures that are more frequent and more severe

than acceptable [ALRL04]. Thus the important link here is between some failure

and how it affects the system dependability in general.

When talking about system failure, it is beneficial to discuss its causes and

context. The notions of errors, faults and even fault-error-failure chains as causes

are introduced later. However, first it is essential to identify the context in which

the failure is discussed, i.e. the system under consideration. Reasoning about failure

and its causes can only be meaningful if it is grounded in a clear identification of the

system under discussion. Modern infrastructure is provided by a system-of-systems

but, if one wants to analyse, for example, the failure to provide electricity to an area,

it is crucial to distinguish the electricity generation and distribution systems and

1The term intended service is used instead of the correct one, because correctness requires
unambiguous documentation. Ideally, a specification is used to define the correct system behaviour
(see Section 3.5). However, common practice is that a system’s correct state or service are not
documented or the documentation is not complete and precise. Therefore, generally, a definition
of a system’s intended service is used [ALRL04].
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furthermore the system of fuel provision (to power stations), etc. Disagreements

about the cause of a failure often have their origins in the fact that the discussants

are considering different systems or different views of the system. The identification

of the system boundaries and the scope of discussion (i.e. systems included in the

reasoning) can clarify the context. The discussion on system boundaries is continued

in Sections 2.3 and 3.3.

The precision about identifying the discussed system should be kept when talk-

ing about failure and its cause as well. The basic terminology and notions of system

failure in the field of dependable computing were established by Avižienis and oth-

ers [ALRL04]. The actual words chosen are less important than the separation of

three concepts—but given their wide use, it was chosen to stay with the words “fault,

error and failure”. Without much elaboration, these concepts can be understood as

following:

Failure A service failure is a deviation of a system’s service from a correct one.

(Note that some kind of justification is needed to judge a service incorrect.)

Error An error is a system state that deviates from one needed for correct opera-

tion; an error may thus lead to a failure. (Note that an error may not lead to

a failure and a failure may be a result of more than one error.)

Fault A fault is simply a cause of an error. In many cases faults are the result of

external failures in other systems (e.g. damage to the system). Faults may also

be created during development and thus be part of the system until fixed, but

may never actually be activated (lead to error). An exhaustive fault taxonomy

is given in [ALRL04].

These notions comprise a chain that describes the failure life-cycle:

· · · → fault→ error → failure→ · · ·

When describing a failure, the error and fault leading to it cannot be excluded.

The following sections elaborate on these definitions and on how their chains link

together in the event of failure propagation.

2.2.1 On failures

The notion of failure may seem simple and intuitive enough that it may prevent one

from elaborating on its description: e.g. system stopped working, system produced
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an incorrect result, etc. However, one cannot talk about failure without agreeing

on what is actually the intended service of a system. For example, consider a

power plant shut down for a scheduled maintenance—it fails to provide its service

(generating electricity) and the dependent systems could treat this as a failure in

providing electricity. However, this is not a failure, because maintenance stops are

part of a correct service description—the plant design requires maintenance stops.

This shows that a failure is a judgement of the system made by humans or an-

other system. The fact that the power plant is not producing electricity can be

treated differently: as a failure by the electricity user who is not aware of main-

tenance stops; or as normal activity, as intended by system design. Therefore, in

general, the judgement on whether a failure has occurred may differ. Furthermore,

the judging system itself may be incorrect! For example, a faulty sensor system may

misreport a failure of the monitored infrastructure system.

To put these ideas in a general framework, a failure could be described in the con-

text of a system-of-systems. A failure of a system within this framework is an event

that occurs when the system’s service deviates from the intended one. The identi-

fication of a failure is judged by its user, which could be another system [ALRL04].

The judgemental system can be an automated one (e.g. a control system), a human

being or human system, etc. [Ran00]. A simple approach would be to describe the

system and its users and relations as a system-of-systems. This provides a good

context to talk about the failure. Each related system could act as an independent

judge, thus yielding different and subjective views of the failure. This view allows

for a non-uniform identification of failure: different systems could have different

expectations about the system in question. Furthermore, such judgemental systems

may misreport or themselves fail in the judgement of another judging system. This

subjectivity in observation and judgement means that failure itself is not an abso-

lute notion [Ran00, Jon03], hence the need for a precise description of the failure

and systems in question.

To avoid arbitrary judgements, Jones [Jon03] suggests using formal specification

to describe a system—the failure then is a deviation from the said specification (see

also further discussion on specifications and top-down development in Chapter 3).

Note, however, that the specification may also be faulty and describe the system

function inadequately [ALRL04]. Further ideas about this are explored in Chapter 4.
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2.2.2 On errors

When analysing a failure, one needs to try to identify the incorrect system state

(the error) leading to this failure. For example, consider a waterway used for ship

transport. In some event, e.g. a dry season, the water level may become too low

for the big ships. This erroneous state of the transport system may lead to a big

ship running aground—a system failure. Note, however, that the error state may

not lead to an actual failure—it may be latent. If no big ships use the waterway

during the duration of low water, the error state will not manifest a failure.

The identification of an error state is necessary for determining applicable mea-

sures of handling the said error. A taxonomy of errors and handling measures in

dependable computing is given in [ALRL04]. Most of them can be adapted for in-

frastructure systems as well. For example, the low water error could be compensated

for by disallowing big ships from using the waterway and providing an alternative

route to destination (redundancy). Another solution could be to try rolling the error

state forward—recovering the system to a new correct state, e.g. lowering the water

usage in surrounding areas, redirecting water from other sources or adjusting water

level using sluices. The rollback recovery would be less frequent in infrastructure

systems than it is in computing. The nature of digital data allows a computing

system to be easily rolled back to the last good backup or to revert a transaction.

For infrastructure systems, however, the physical components and events can rarely

be undone and instead require fixes and adjustments—forward recovery.

The same failure can be caused by different error states. Therefore it is impor-

tant to identify all possible error states, because there can be different strategies for

handling them and thus preventing failure. Continuing the earlier example, the fail-

ure of a ship running aground can be the result of an accumulation of some obstacles

on the bottom of the waterway. The error state (waterway becoming obstructed)

requires different recovery strategies than earlier, e.g. clearing the bottom of the

waterway.

Identifying and describing the different error states allows devising appropri-

ate strategies of error recovery. Note that this is a different activity from dealing

with failures : failure is a consequence of the error state and dealing with it means

addressing the faults and errors it activates during failure propagation (Section 2.3).
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2.2.3 On faults

Faults are the causes of error states in the system. Similar to the relationship

between error and failure, there can be different faults causing the same error state.

Faults represent the problems or weaknesses in the system or external events causing

the error state, etc. Addressing the faults may eliminate certain failures altogether.

The notion of fault encompasses all possible causes of errors and then failures,

which have been subject to attempts at classification in different ways [ALRL04,

Kop11]. Adapting and reusing such classifications for infrastructure systems could

provide an exhaustive list of things to identify and address when reasoning about

dependability of such systems.

Avižienis et al. [ALRL04] recognise three major partially overlapping classes:

development faults (occurring during system design, construction or deployment),

physical faults (includes all possible faults that affect hardware) and interaction

faults (all external faults). The thesis will use different examples of faults through-

out, but focuses most on development faults, which should be addressed before the

system is operational.

Faults that cause error states in the system are active ones. However, faults can

be dormant in the absence of events that cause the error [ALRL04].

In the context of real-time embedded systems (which infrastructure systems

can be considered to be), Kopetz [Kop11] categorises faults in two dimensions:

according to their space and time. Fault space can be internal and external to the

system (component) in question. Internal faults are either physical (e.g. break in a

wire), or design faults, either in software or hardware. External fault are physical

disturbances (e.g. a flood causing problems in the power supply) or provision of

incorrect input data.

The spatial aspect of system faults can be tricky to reason about and identify

appropriate relationships. These can encompass failure in one system affecting an-

other one due to spatial proximity (e.g. explosion in power plant damages nearby

transport link) or multiple nearby systems can be affected by the same external fault

(water from nearby river flooding adjacent power plants). Kopetz [Kop11] recog-

nises that embedded systems are normally designed in a way that spatial faults are

contained within a single system, thus limiting the scope of such faults. For exam-

ple, a flood in a nearby river would only affect one power plant if by design there is

not another one built right next to it.

From a time perspective, faults can be transient or permanent. Note that design
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faults are always permanent: a software bug cannot appear temporarily. A transient

fault is one that appears for a short interval and does not require a repair action

after its activity. An example would be the wearing out of electronic hardware—

corrosion damages the system, but has not developed to a state to fail the hardware

permanently. A preventive maintenance action should be performed to avoid a

permanent fault of the system [Kop11].

A permanent fault requires a repair action to remove. A permanent external fault

would be a lasting lack of service by a dependent system (e.g. a power supply).

Physical problems in hardware or software are categorised as permanent internal

faults.

The role of faults is especially important in failure propagation. When linking

systems together, a failure in one can activate a fault in another, thus causing the

failure propagation (see next section), and addressing the faults improves depend-

ability of the system and the overall system-of-systems. Note that achieving a nearly

fault-free system is an activity requiring possibly great cost and effort. The issue of

system dependability vs. its cost is explored further in Section 2.5.

2.3 Failure propagation

In a system-of-systems scenario, a failure in one system may manifest as a fault in

another (dependent) system, which could cause an error and lead to a failure of that

system. Such failure propagation can be described in connected fault-error-failure

chains. An abstract example follows (similar examples in [Mas06] and [ALRL04]).

Consider two dependent systems A and B, where service SB depends on a correct

service SA from system A. System A may have faults, which are dormant during

normal operation. Some external or internal event may activate a dormant fault TA,

leading to an erroneous state EA. At the system boundary, this error EA manifests

as incorrect system service—failure FA. Since system B depends on a correct service

SA, the failure FA acts as an external fault TB. Note that in an alternative case,

failure FA may in turn activate a dormant fault T ′B in system B. Following the fault-

error-failure chain, this fault TB can produce error EB, which may yield incorrect

service SB—failure FB. Figure 2.1 illustrates both cases of this failure propagation

scenario.

A failure describes a consequence of a fault-error-failure chain. The incorrect

service is the result, so to prevent such a failure, one needs to identify the error
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Figure 2.1: Failure propagation scenario.

leading to it and then the fault origin. In a system-of-systems, where failure prop-

agation can occur, it is important to recognise how the failure propagates: what

faults are activated/affected at each system boundary. By having a clear under-

standing which system each step in the failure propagation must be attributed to

one can trace the context of original fault that led to the eventual failure [Jon03].

It is moreover essential to remember that whether a failure has occurred is in fact

a judgement made in another system.

It is suitable to describe systems at the level of their boundaries. This can help

clearly identify the jump from failure to fault. The failure is thus described in

the context of its system. By agreeing on this context, one can start investigating

measures to prevent this failure from propagating into the other system. Note that

this raises a question of which system to handle the propagation on: if a fault is

being activated in the dependent system, it could be fixed to prevent the failure

from activating this fault; or if the failure itself becomes an external fault, then it

must be prevented, e.g. by correcting the error state or eliminating the fault causing

it.

Note that for complex system-of-systems, the boundaries are rarely exhaustive

and fully described. More commonly, a system boundary may be represented by

different views on the system. Full discussion on system boundaries and structure

and how a complex system-of-systems is linked together is available in Sections 3.3

and 3.4.
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2.4 Human role

The human element can have a large impact on system dependability. The propor-

tion of faults caused by human interaction can be significant2. This thesis supports

a view that good system design can help reduce human interaction errors by pro-

viding an intuitive and convenient environment for operators. Human operators

are often attributed with the failure because their activities are the last steps in

the failure chain and they are easier targets to blame than addressing the under-

lying issues [Rea00, RV06]. Unfortunately, changing human behaviour is rarely an

option, yet designing appropriate support systems and operator environments is in

the power of the system developers.

Human failures are inevitable—even on familiar tasks, humans are prone to slips

and lapses. Some statistics show that 60% of human errors are on (familiar) “skill-

based” automatic tasks, while difficult ones constitute the remaining 40%: 30%

on “rule-based” reasoning tasks, 10% on “knowledge-based tasks that require novel

reasoning from first principles” [Rea90].

The inevitability of human fault hints that systems dependability analysis must

consider that humans will fail. Reason [Rea97] states that “human error is a conse-

quence not a fault” and by understanding the context that led to error one could try

to limit its recurrence. It is important to include all relevant contributing factors,

e.g. supervision, training, procedures and equipment into analysis in order to find

underlying reasons for human error. Thus in failure analysis, focus must be directed

to latent conditions and situational contributions to the error, instead of personal

ones.

Furthermore, judging from the proportions above, system design could include

machine support for the repetitive, automatic tasks. When designing a system,

the human operator interaction could be included in the dependability analysis,

especially for these automatic tasks. This would allow for design of fault-tolerance

measures for the human tasks, e.g. computer-based assistants to train or car drivers

(recognition of incoming obstacle, a missed sign, etc).

The difficult tasks (knowledge-based or requiring complex interaction) are much

harder to include in dependability analysis or to design fault-tolerance for. However,

they constitute a much smaller part of human errors. Some of the human interaction

accidents come from failure in following instructions. However, human systems can

2Different studies report 50-80% of accidents being attributed to operator errors and other
human factor causes [Per84, RV06].
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also use that to the advantage of overall system dependability. The ability to judge

the situation and their actions independently and to react outside the set rules

to avoid failure has a number of benefits [Jon05]. There are examples illustrating

operators ignoring procedure to avoid accidents, as well as ones describing how

following prescribed rules resulted in a failure [Lev11].

As mentioned in earlier sections, this thesis proposes to incorporate humans as

systems in the overall dependability modelling and analysis. This provides a generic

framework and allows reusing dependability ideas for human interaction modelling.

Avižienis et al. [ALRL04] classify human interaction problems as external faults

to the system. In the proposed system-of-systems approach, the human system is

just another component system and thus falls into the standard failure propagation

framework: human interaction could be an external fault and should be handled

in the human system; or could activate a dormant fault in the dependent system

and should have fault-tolerance designed for it. Furthermore, by expanding the

scope of dependability analysis, one could include failure propagation between hu-

man systems, as well as adding other factors, e.g. training or management systems.

The configuration of the overall infrastructure system would have assumptions on

human activities to ensure that both humans and infrastructure are properly de-

ployed [Jon05].

2.5 Dependability vs. cost

The view taken in this thesis is that systems that are fault-free in absolute sense,

are impossible to achieve within limited resources of a real-world scenario. This

leads to acceptance that faults in systems are inevitable and must be included in

reasoning and analysis about systems.

A high level of dependability can still be achieved by implementing certain fault-

tolerance measures (e.g. adding redundancies, resource buffers, etc.). Development

of highly dependable systems, however, can increase costs enormously, take vast

amounts of time to complete and even exceed allocated and available resources.

Regardless of all such efforts in improving fault-tolerance, systems may still fail

due to unforeseen faults or unexpected conditions. Factors such as limited current

knowledge to anticipate future faults and other uncertainties, as well as a system’s

complexity outgrowing the scope of understanding can prevent us from achieving

desired dependability. As a result one cannot talk about the absolute dependability
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of system, but instead must reason about the trust in the system, which can be

described by acceptable dependability [ALRL04].

The notion of acceptable dependability should be considered both when design-

ing (modelling) a complex system A itself, and when including the other systems

Ds that the designed system would depend on. So one cannot assign a specific

dependability to the designed system, but instead should define the acceptable de-

pendability to account for the uncertainties mentioned above. The same should be

done for the systems that provide a service to the system in question. The depend-

abilities of these needed component systems should be judged and included into the

system analysis at a certain acceptable level.

Modelling the dependency systems Ds with acceptable dependability is problem-

atic because of the additional uncertainty. The designed system A itself is better

understood and thus its acceptable dependability can be evaluated more precisely.

Evaluation of acceptable dependability for Ds systems requires information about

them. The sound way of arguing about the dependability of these component sys-

tems is to refer to their specifications. However, one may not be available for the

system in question, or the specification may be inadequate. Alternatively, one could

try to avoid the component systems and their uncertain dependabilities altogether.

A solution would be to create a self-sufficient system to ensure that the designed

system—the whole system-of-systems—meets the required dependability level. For

example, one could design a self-sufficient telecommunications node that generates

all electricity required to power itself. This case would see reduction (or even elim-

ination) of the dependence on the energy grid. The cost of a such system would

increase significantly, however in some high dependability systems such cost may be

justified. The cost, however, is a deciding factor in many industries. The common

practice is to use off-the-shelf or existing systems, which are cheaper to integrate and

use, rather than creating custom self-sufficient solutions, but they must be included

with acceptable dependability.

The cost of achieving high dependability should not be evaluated on its own.

When considering failures in systems with acceptable dependability, one has to talk

about their probabilities and thus make decisions about the system’s dependabil-

ity using statistical methods. Therefore the cost of high dependability should be

weighed against the possible cost of failure and the probability of its occurrence.

High dependability of a system is certainly justified in some systems, where failure

would incur high costs: lives of people (e.g. in safety-critical systems), direct damage



CHAPTER 2. DEPENDABILITY KEY CONCEPTS 19

to the system, lack of important service, expensive recovery procedures or damaged

reputation of the organisation. In non life-threatening scenarios, however, the cost

of redundancy in a system (e.g. one of a “spare” power station) may significantly

exceed the costs of just letting it fail occasionally. For example, one should consider

that users may accept an occasional electricity shortage, e.g. in remote areas with

low population, in order to receive the electricity service at a lower cost. In the end,

one should always consider the trade-offs between dependability and cost to achieve

it.

The full cost of failure should also include considerations of failure propagation

occurring, which can increase the cost greatly, and considerations on the cost of

redundancy and system recovery. An in-depth study in evaluating the monetary

cost of a data centre downtime has been undertaken in [Eme11]. The authors as-

sociate the vulnerabilities of the data centre and failures of dependency systems

such as power, cooling or monitoring with the costs of data centre downtime. They

argue that while added redundancy incurs additional costs (they still need to repair

original equipment failures), the always-available backup prevents failure propaga-

tion leading to disrupted data centre availability and thus substantial indirect and

opportunity costs to the organisation.

Another aspect worth noting here is the need for investment prioritisation as

well as the time dimension when such an investment should be made. The need for

prioritised investment of national infrastructure systems and solving cost/benefit

optimisation problems appeared in [Tre11] as well. A further discussion is given in

Section 4 when investigating a system’s design/planning stage as another system in

a complex system-of-systems. The investment into a system’s dependability should

target underlying issues of failures in complex systems. Analysis of failure propa-

gation between infrastructure systems could help find the real cause of a problem.

Then it should be fixed instead of dealing with the consequences of propagated fail-

ure (e.g. adding redundancies when the problem should actually be fixed in the

originating system). An interesting view appears when considering failures propa-

gating from human systems. This thesis emphasises that in most of the cases, human

error is a consequence, not the cause of failure (see Section 2.4). Therefore, the in-

vestment should address the underlying problem: fixing the working environment,

training or management.

When investigating complex infrastructure system as a whole (as system-of sys-

tems), one could find alternative solutions to some of the problems, such as high
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failure occurrences. For example, consider high frequency of road accidents in cer-

tain area. The usual direction would be to improve the traffic controls or the road

network, but alternatively, one could invest in railways or ICT to improve home

working, thus easing the pressure on the road traffic systems.

To summarise, one should not talk about system dependability without consid-

ering one’s willingness to pay for it.

2.6 Application to infrastructure systems:

failure propagation study

The parallel between dependability modelling and analysis in computing systems

and infrastructure systems can be easily established. The complexity of both sys-

tems, the role of humans and the interaction of different component systems raise

similar problems, especially when concerned with how such systems fail or how to

prevent these failures. This supports the hypothesis in this thesis that concepts

from dependability analysis in computing can be reused beneficially in infrastruc-

ture systems.

This chapter has introduced the basic notions of fault, error and failure and

their descriptions in the computing literature. The examples aimed to show how

they would appear in the context of infrastructure systems (see the “ship running

aground” example in Section 2.2). Furthermore, this chapter touched on the issue

of failure propagation, recognising that failures in one system can activate (or act

as) faults in a dependent system, thus potentially leading to another failure.

This section analyses a more detailed example of failure propagation. It uses the

fault/error/failure notions to describe an accident involving several interdependent

infrastructure systems. The study describes a blackout of a major telecom node in

Rome, Italy, which happened in January 2004 [CMS+07]. The telecommunications

node was flooded and a blackout occurred causing problems and delays in different

infrastructures including the electrical distribution network.

A report describing the accident is available in [CMS+07]. In short, a pipe burst

in the air-conditioning system of a telecommunications node and flooded the node

devices. To fix the pipe, the air-conditioning was turned off by the technicians, which

caused overheating of the whole node. Furthermore, redundant power systems failed

due to the flooding, taking the telecommunications node offline. The node failure

resulted in overload of the whole telecommunications network. Also, it shut down
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all communications links between control stations in the power grid.

This example is decomposed into fault-error-failure chains happening in differ-

ent systems. Each such chain is described using a table that outlines every step

below. Furthermore, the failure propagation overview is provided in Figures 2.1–

2.4: first, the cooling and power subsystems are illustrated separately and then the

full propagation is shown in Figure 2.4.

The report describes a pipe burst as the start of the problems leading to com-

munications blackout. Table 2.1 tries to identify the reasons for the pipe burst

and flooding. The identified system is chosen to be Plumbing, because flooding is

a failure of the water transport service. Note that depending on the level of ab-

straction, one could choose to have the whole Air-conditioning plant as the target

system. However, then the definition of intended service for the air-conditioning

plant would need to include a clause that “air conditioning does not damage sur-

rounding environment” or something similar so that the flooding failure describes a

deviation from that service.

Table 2.1: Fault-error-failure for plumbing system.

System: Plumbing subsystem of air-conditioning plant

Fault: Corrosion of pipes (transient internal fault).

Error: Pipe wall is too weak.

Failure: Pipe bursts and floods the telecommunications node.

Failure: Plumbing fails to provide water to the air-conditioning system.

The identification of the fault could raise questions about how to address it.

“Corrosion of pipes” is a transient fault and maintenance activities can prevent

it from becoming permanent. Thus if the analysis included further systems, e.g.

maintenance of the node, the source of the failure propagation can be traced there.

The failure of the plumbing subsystem starts the failure propagation described in

this scenario. Figure 2.2 follows the propagation within the whole cooling system.

The figure provides an overview of the main failures and faults in the illustrated

parts of the chain. The errors are excluded from the figure for brevity. The graph-

ical notation used is similar to the one in Figure 2.1. The next steps of failure

propagation are described below.

The main problem identified by the report is that in order to repair the pipe

burst, technicians had to shut down the air-conditioning system. Table 2.2 describes

the issue leading to the air conditioning failure.
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Figure 2.2: Failure propagation within cooling system.

Table 2.2: Fault-error-failure for air-conditioning system.

System: Air-conditioning plant

Fault: Water is not supplied (external fault from plumbing subsystem).

Error: Shortage of water in the system—system is turned off.

Failure: Air conditioning is turned off for too long.

The need to shut down the air-conditioning for repairs should have been planned

into the system design. To avoid a single point of failure, the overall cooling system

had to have alternative cooling solutions. Table 2.3 identifies this as a development

fault in the planning system—lack of redundancy in case the air-conditioning system

is shut down.

Table 2.3: Fault-error-failure for cooling system.

System: Cooling system (only air-conditioning plant in the telecommunica-
tions node)

Fault: Lack of redundancy in case air-conditioning system is shut down
(development/planning fault).

Error: All cooling systems are not operational.

Failure: Temperature is allowed to rise too high (cooling is not adequate).

Table 2.4: Fault-error-failure for telecoms node system.

System: Telecommunication node

Fault: Temperature is too high (external fault—failure propagation from
cooling system).

Error: Node devices are overheated.

Failure: Node devices stop working.
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The flooding in the telecommunications node took out the main power supply

as well as prevented startup of the diesel generator, which was designed as a re-

dundant power source. A second redundancy was provided by a battery, which was

exhausted quickly. Figure 2.3 illustrates the main points of the failure propaga-

tion within the telecommunications node power supply. The detailed descriptions

of fault/error/failure for each system are provided in Tables 2.5-2.7.
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Figure 2.3: Failure propagation within power system.

Table 2.5: Fault-error-failure for mains power system.

System: Main power supply from the power grid

Fault: Supply cabling is flooded (external fault that is the failure of plumb-
ing system).

Error: Power supply system short-circuits.

Failure: No power is supplied.

Table 2.6: Fault-error-failure for diesel generator system.

System: Backup diesel generator

Fault: Generator is flooded (external fault that is the failure of plumbing
system).

Error: Water in the generator.

Failure: Generator fails to start.

Table 2.7 talks about the overall power system, which was inadequately designed

or configured to allow for double redundancy to fail.

Failure of the telecommunications node affected dependent systems. Figure 2.4

illustrates the main points of the overall failure propagation within the scenario.
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Table 2.7: Fault-error-failure for all power system.

System: Whole power system (grid, diesel generator, battery)

Fault: Inadequate dependability of power system configuration.

Error: All power systems are not operational (power grid out of service,
generator failed to start, battery exhausted).

Failure: No power is supplied.
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Figure 2.4: Failure propagation within the scenario.

The outage of the telecommunications node had effects on the overall telecom-

munications system, which resulted in disruptions and lack of availability of fixed

and mobile telecommunications networks (Table 2.8).

Table 2.8: Fault-error-failure for telecoms network system.

System: Telecommunications network

Fault: Telecommunications load distribution problems (fault activated by
telecommunications node failure).

Error: Other telecommunications nodes in the network are overloaded.

Failure: Telecommunications service blackout or disruption.

One of the consequences of the telecommunications node outage was the complete

unavailability of two redundant communication links between power grid control

centres. One of these centres is unmanned and controlled remotely from the other

one. The lack of a communications service affected the power grid substations linked

to the disconnected control centre—they had no control commands (Table 2.9).

The fact that a single point of failure was overlooked when deploying the sup-

posedly redundant communication links between SCADA control centres should be



CHAPTER 2. DEPENDABILITY KEY CONCEPTS 25

Table 2.9: Fault-error-failure for grid control system.

System: Power grid control system (SCADA)

Fault: Telecommunications service between two control centres is not avail-
able (external fault—telecommunications node failure).

Error: No communication between control centres.

Failure: Unmanned control centre and its managed substations are not con-
trolled.

treated as a development fault (Table 2.10).

Table 2.10: Fault-error-failure for grid control system.

System: Power grid control system (SCADA)

Fault: Single point of failure (node outage) for redundant communication
lines (development fault).

Error: No communication between control centres.

Failure: Unmanned control centre and its managed substations are not con-
trolled.

This example illustrates failure propagation between interdependent infrastruc-

ture systems. Some of the faults and errors are speculative given the available

literature, however they aim to show the general idea and not strive for precision

regarding this specific accident. The identification of faults causing the failure prop-

agation allowed description of development faults that need to be addressed to avoid

similar accidents in the system.

· · ·
This chapter is important to infrastructure interdependency analysis because

infrastructure systems are often strongly coupled (energy depending on ICT for

control, and ICT depending on energy for power, etc). By identifying how the fault-

error-failure chain spans such systems, one can start reasoning about and designing

against the failures.

The next chapter continues the topic by focusing on description, modelling and

construction of such complex systems. The interdependencies between systems can

be described with improved precision by defining system boundaries and assump-

tions. Furthermore, the system can be constructed with explicit fault tolerance

(or records on its vulnerabilities) by describing it abstractly and then introducing

details as needed, but ensuring that abstract requirements hold.



Chapter 3

Top-down approach and

formal methods

The top-down approach to systems development, especially supplemented with for-

mal methods techniques, facilitates abstraction of key concepts in a system, empha-

sises the role of system’s a structure in its dependability and allows for a focus on

important dependability properties during the design and analysis processes. This

is especially important when considering complex systems-of-systems, as it allows

talking about key dependability properties and relations without getting lost in the

low-level details.

This chapter focuses on such systems-of-systems dependability. These are sys-

tems which can be considered systems-of-systems recursively. At any depth of de-

composition of such a system, it can consist of further component systems-of-systems

or be considered as atomic. The determining factor is whether the contents of the

system are important or at least interesting to the analysis at the chosen level of

abstraction. For example, when considering a human system (e.g. some organisa-

tion), one may be interested in it as a whole, in relations between its departments

(next level), or even roles of specialists or specific workers (a further level). However,

the level of a single person could be considered atomic, as the decomposition into

internal organs is no longer relevant to the dependability analysis.1 Furthermore,

this thesis does not restrict analysis to one kind of system and considers complex

systems of different natures, e.g. human systems, technological, civil engineered sys-

tems and so on. The main objective here is the same: understanding (and designing

against) failure propagation from one system to another one.

1Unless, for example, one would need to ensure that an airplane pilot’s heart monitor device
does not interfere with plane controls.

26
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The top-down perspective enables one to see an uncluttered big picture of the

system in question. One could reason at the abstract level by omitting irrelevant

components and restricting the details of components to only the parts that are

required at the specific level of abstraction. With a limited number of concepts to

manipulate, one can benefit from further techniques, such as formal methods, to

construct a rigorous argument about the system.

Formal top-down development is an active research area for development and

analysis of complex or high-integrity software and other computer systems [WLBF09,

in particular Sect. 7.1]. The H2 hypothesis raised in this thesis suggests that these

techniques can be applied to good effect to national infrastructure systems. The

top-down view can provide a clearer description of the systems and hence their

interdependencies and failure propagation.

This chapter investigates several avenues of taking a top-down view to (infras-

tructure) systems dependability analysis. Note that the thesis does not aim to be

exhaustive and provide a fully-developed methodology of applying top-down devel-

opment to infrastructure systems. Instead, the aim is to investigate and suggest

directions in this area that could lead to improved dependability and understanding

of complex infrastructure systems.

This chapter starts with a discussion of the importance of assumptions, system

boundaries and the system structure to its dependability. Then it argues that formal

methods and formal specification allow defining and reasoning about a system’s as-

sumptions, boundaries and its behaviour in a rigorous, mathematically-based man-

ner. Finally, a proposal on how one would go about applying such techniques to a

specific infrastructure system is provided.

3.1 Analysis and design of infrastructure systems

The concepts and techniques presented in this thesis are concerned with both the

analysis and design of future infrastructures. While the proposed approach is generic

and thus applicable in both of these areas, the activities in analysis and design differ

slightly.

The aim of infrastructure analysis, as described in this thesis is, in particular, to

identify flaws of the current existing infrastructure systems and how they affect other

systems (see Section 5.2 for an overview of other existing approaches to analysing

failures in complex infrastructure systems). Evaluation and assurance of existing
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infrastructure dependability is achieved during analysis activities: clearly identify-

ing the concepts and their lifecycles within an existing system, i.e. faults, errors

and failures; identifying system boundaries and compositional structure; describ-

ing (preferably formally) the system services and relationships with other systems;

identifying and recording external and internal assumptions about the system. By

collecting these descriptions within some (formal) framework would allow construct-

ing a specification of the existing system. The application of a top-down approach

to such descriptions would help tackle the overall complexity. Further techniques

can then allow verifying the specification to identify flaws within the overall system,

e.g. whether the low-level details of the system actually correspond to the system

description at the higher level. A rigorous description by itself would help identify

gaps in the system relationships.

The design of infrastructure system can involve either improving existing in-

frastructures, planning new extensions—up to designing full infrastructures from

scratch. All these activities would benefit highly from employing the top-down de-

velopment approach presented in this thesis. When designing a new or improved

infrastructure system, the design activities would follow a top-down approach: first

it would be identified what is expected from the system, its functionality as well as

required dependability. Then it could be refined to an actual system that would be

built by introducing implementation details step-by-step. The process must ensure

that the original specification and dependability assurances are preserved. During

the process, the activities would be similar to those of analysis: from precise defi-

nitions to the overall verification. The existing infrastructure considerations would

be included in the specification and reasoning, e.g. as given constraints.

The analysis and design of infrastructure systems are closely linked together.

Analysis identifies flaws within existing infrastructure systems and the next natural

step is to design upgrades to address them. The design process cannot ignore the

importance of analysis of the existing systems—the results would shape the new

system. Therefore the overall planning of future infrastructure systems would be a

synthesis of analysis and design techniques which cover existing and new systems.

3.2 Assumptions

Assumptions are an inevitable part of any system design and are critical in reasoning

about system dependability. This thesis recognises assumptions as a key concept
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and explores their role in system design. The fact that system dependability is

reliant on the validity of its underlying assumptions is particularly emphasised.

Assumptions are a way of dealing with uncertainties or lack of knowledge—not

only in system design, but in day-to-day activities and situations. As a routine

example, take travelling using public transport. When planning a journey, one

frequently assumes that even though the schedule may not be kept to precisely,

the general availability, approximate frequency and other conditions will hold (e.g.

a bus will arrive within a 15 minute interval). The reliability of “arriving at the

destination on time” holds as long as the assumptions are valid (e.g. the bus does

not get into a traffic accident).

In general, assumptions are a certain subset of different future scenarios, which

one considers most likely. By selecting this subset of scenarios, the context for a

decision is established and one can reason about decision within this context (e.g.

by assuming that there will be a bus every 15 minutes).

Assumptions allow us to focus on the important parts of a problem and not

explicitly model (include in the decision) real world components. Consider the

model for the decision on when to wake up to catch the bus. For an exhaustive

model, one would need to include all possible scenarios of the bus trip, including all

of its attributes (e.g. there is no public transport strike, the driver is feeling well,

there is no car blocking the road, etc.). By making an assumption that there will be

a bus within 15 minutes, one describes only the dependency and not the full model

of the bus behaviour.

Assumptions allow the shaping of the model and the design process of the sys-

tem. One must take care, however, to avoid assuming a model of a system that is too

simple and does not reflect reality (whether the model captures the relevant proper-

ties of the system). The model should be simple, but not too simple—paraphrasing

C. A. R. Hoare2 or A. Einstein3.

Making erroneous assumptions may result in a fault in the system, which may

lead to a system failure. The choice of assumptions should be justified and informed.

Because of limited knowledge and skills, the assumptions may still be unreliable. It

is argued that it is essential to write down all assumptions explicitly. This way the

system is built on explicit assumptions and one may trace decisions down to the

2“There are two ways of constructing a software design: One way is to make it so simple that
there are obviously no deficiencies, and the other way is to make it so complicated that there are
no obvious deficiencies.”—C. A. R. Hoare [Hoa81].

3“Everything should be made as simple as possible, but no simpler.”—attributed to A. Einstein.
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assumptions. Written assumptions can be subjected to review, external certification

or other tools in order to check their justification, validity, correctness and applica-

bility. In this way faulty assumptions be found and addressed in a manner similar

to other system faults. Only by writing the assumptions down can one subject them

to the rigour of the whole system analysis.

A major danger is that designers make some assumptions without even realising

(and thus recording) them. The field of safety cases (analysis) specifically tries to

detect unwarranted assumptions. Safety cases use structured arguments and evi-

dence to argue about safety and (via extension [DK04]) dependability of systems.

Kelly and Weaver [KW04] emphasise the crucial role of both argument and evidence

in establishing the safety case: argument without supporting evidence is unfounded;

evidence without argument is unexplained. The argument and evidence are defined

within a particular context, which can be established as a set of assumptions. How-

ever, without defining the context, arguments and evidence cannot be established.

Great care must be taken in incorporating assumptions into analysis. They must

be written down completely and unambiguously. Formal methods provide concepts

and tools to establish assumptions with mathematical rigour, structure and layer

them, as well as find contradictions and inconsistencies. They are discussed in more

detail in Section 2.2.

The importance of explicitly identifying all assumptions can be observed in day-

to-day activities as well. No two people are ever talking about exactly the same

thing, because each bases his argument on his own assumptions. System design is

highly influenced by designers’ assumptions about how other people think and act,

as well as by familiarity with the designed system. So when the system presents

the user with a choice, it is often not clear what assumptions and consequences are

associated with each option.

An illustration of a failure due to implicit assumption can be found in an airplane

crash at Chicago Midway airport on the 8th of December, 2005 [Nat07]. The airplane

crashed by overrunning a snow-contaminated runway. The runway length required

to land safely in these conditions was calculated by an on-board computer, which

worked on data provided by the pilots. The crew input the weather conditions and

received a confirmation from the computer that the airplane would be able to land

and completely stop with 560 feet of runway remaining. However, the computer

was programmed to assume that the engine thrust reversers (a form of brakes)

will be deployed immediately upon touchdown, which they were not—it happened
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18 seconds later. This delay resulted in the airplane overrunning the runway and

crashing.

The implicit assumption made by the program led to the pilots receiving an indi-

cation of predicted successful landing. The pilots were not aware of the assumption

and thus could not adjust accordingly.

Assumptions can provide a trade-off between system dependability and its cost:

one could assume that the system will operate in a safe environment and thus

design a simple system without being concerned, for example, that a hacker attacks

it. Based on such assumption, one may design a system that is more elegant, faster

and cheaper. However, the system dependability would be directly linked to the

trust in the assumptions it is designed on (system is dependable as long as the

assumptions hold).

When defining assumption for a robust system, one could choose to disregard

probabilities of the assumption holding (event happening) and consider every sce-

nario to have a binary outcome: 0 and 1 , where 1 is used to indicate that there

is some likelihood of scenario occuring, and 0 when it is impossible. This pro-

duces assumptions that if a failure can occur, it will. Such a “worst-case” approach

requires reasoning about and implementing adequate measures for fault tolerance

during the design process. For example, if a power plant is being designed that

could be deployed near a river, one may want to reason about it being flooded. The

likelihood of that happening may be very small (say 0.01%). Still, a robust model

would require it to be treated as a hazard and included in the model—“power plant

can be flooded”—with appropriate fault tolerance. Alternatively, one could choose

an assumption that “power plant cannot be flooded”. This simplifies fault tolerance,

however this explicit recording of a design decision will need to be justified during

deployment: ensure that flooding is not just unlikely, but actually impossible. Such

treatment of probabilistic events leads to a robust system, however it also means

that one has to use the same level of redundancy (prevention) even when the real

likelihood is very small.

Note that to capture the actual system and real world environment in the model,

one may consider defining assumptions and system properties with probabilities.

However, one of the main problems of using probabilistic description is that in real

life scenarios such definitions would need to be based on existing data: manufacturer

information, empirical data of system in operation, etc. Such data is rarely available

or accurate and frequently requires lengthy evaluation of the system to collect the
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required data.

In general, the fault assumptions identified at the beginning of system design

should shape the subsequent design activity [Ran00]. For example, assumptions re-

garding the type, probability and magnitude of system hazards shape system design

in such a way that certain fault tolerance measures (strategies) need to be employed

that tolerate the specified faults [Kop06]. The fault types and fault tolerance are

discussed further in Section 2.2.

Assumptions are not limited to the initial stages of the design process. The un-

derlying assumptions need to be re-examined when the system environment changes.

This is particularly true for infrastructure systems, where the dynamic nature of in-

frastructure and its environment (natural, social, technological and political) should

be addressed in making assumptions about such systems. The infrastructure sys-

tems are long-term projects and after certain periods of time the initial requirements

can no longer be met because the assumptions do not hold anymore.

One of the tasks that the ITRC research project4 investigates is development

of decision procedures for future infrastructures given different (and changing) as-

sumptions about the environment. The basic dependability (including balancing

capacity and demand) must be re-evaluated in the context of new assumptions

about changing social and economical (technological) environments, new hazards

(and of increasing magnitude) and others. One particular area of ITRC concern is

hazards arising from climate events—mostly focusing on flooding.

This section emphasised the role of assumptions in fundamental reasoning about

system dependability. Assumptions create a context, hence should be included

in reasoning. Moreover, they must be clear, unambiguous and justified. Most

importantly, however, one should be explicit about any assumptions upon which

the model or any reasoning depend.

3.3 On boundaries

When taking a top-down view of a complex system-of-systems, its inner workings

can be omitted from the analysis. This way each system would be described on its

boundary—by specifying its behaviour as interaction with its environment. Note

that environment can be considered to be another system that may be comprised

of further component systems.

4http://www.itrc.org.uk/
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One system’s interaction with another happens via its interface determined on

the system boundary. Systems may have different interfaces to interact with various

other systems. Moreover, there can be multiple interfaces between any two given

systems. For example, consider a bank and its customers as two distinct systems.

The banking system provides a variety of interaction capabilities for customers:

internet banking, telephony, or face-to-face customer service in a branch. These

could be considered as various interfaces of the banking system.

When modelling or reasoning about a system interaction scenario, one needs to

specify the scope and boundaries of the systems in question. A system boundary

comprises a collection of interfaces relevant to the reasoning activity—it is a view-

point on the system. In theory one could try to incorporate all interfaces into a

single boundary, however in practice and especially for complex systems it is prob-

ably infeasible and unnecessary (irrelevant in most cases). To control the scope

included in the reasoning, irrelevant details are omitted. Therefore, when talking

about one system interacting with another, it is not necessary to know about its

other interactions and interfaces. For example, consider a car system: its driver

interactions may include usage of the cruise control system, but do not need to

include the engine repair activities.

System boundaries are not always clearly identified. Different perspectives (points

of view) would define different boundaries of the same system, which may overlap

[JR06]. Therefore it is important to determine the boundaries when reasoning about

systems carefully. This is emphasised in the thesis. Absence of such agreement could

render a discussion between two experts pointless, since they would have different

system boundaries (and thus possibly different behaviours) in mind.

A system interface incorporates a set of assumptions on the environment and

other systems, as described in the previous section (§3.2), which would also normally

be written down at the level of the system boundary. If expressed formally, these

assumptions and specifications would become the contract of a system’s interface.

A system-of-systems is built from systems (components/entities) that interact

with each other. The boundaries of the whole system and its components could

be considered in a compositional manner. The component systems have their own

interfaces, which describe their interactions with the environment and other systems.

The behaviour of the whole system is then normally discussed by fixing boundaries of

its constituent components and considering how the components are linked together

via their internal interfaces [GIJ+02]. This way, the internal interfaces would not be
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considered as part of the big system’s boundary. However, the way the components

are linked via these interfaces dictates the emergent behaviour of the whole system.

Note that internal linking of component systems during the composition raises the

key issue of such systems-of-systems: mismatches between interfaces [GIJ+02].

The interfaces between systems (and between the system-of-systems and its en-

vironment) serve as the main route for failure propagation. One can consider that

interdependencies between systems constitute their interfaces. This thesis investi-

gates failure propagation through system interfaces, as well as failures producing

faults in other systems.

In conclusion, system boundaries depend on the specific viewpoint taken—boundaries

are not universally determined for particular systems. They are an abstraction to

frame one’s reasoning. In any fruitful discussion it is very important to agree upon

them and avoid shifting without explicit notification and agreement. The next sec-

tion concerns the structure of different systems interacting with each other and

particularly emphasises the role of system structure in failure propagation, i.e. how

it is directly linked to system dependability.

3.4 On structure

A top-down approach allows one to step back and perceive the high-level structure

of a system-of-systems. The previous section discussed the boundaries of systems.

This section builds on this by talking about the structure of component systems that

make up a larger system, linking together via these boundaries. The aim here is to

understand the role of structure to system dependability and how structure could

be used to restrict or prevent failure propagation. This view of system structure’s

role in dependability was proposed in [JR06].

The component system boundaries, their functions and interactions describe how

each system fits in the structure of the whole system-of-systems. This can be applied

recursively to describe structures of the component systems themselves. Jones and

Randell [JR06] argue that it is the structure of the system that enables components

to interact and thus determines the behaviour of the whole system-of-systems. For

instance, disassembling a bicycle would take away its structure and yield a number

of separate components without the bicycle-like behaviour.

When assembling a system, different structures can be chosen to achieve the

same system behaviour. However, these decisions could have a strong effect on the
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dependability of the system in question. The dependability of the whole system

cannot be composed solely by analysing its component systems’ dependabilities,

but emerges from how these components are linked together, i.e. what structure

has been chosen. As a trivial example, take a brick wall that is constructed out

of a number of single bricks. If bricks are stacked one exactly on top of the other,

a failure in a lower brick (e.g. removal of the bottom one) would bring down the

whole column. Instead, if the bricks are laid bonded (e.g. using a Stretcher bond

to cross the bricks) to increase stability, removing one of the bricks would not bring

down the whole column.

A particular case where the structure of a complex system-of-system matters

is in ensuring the absence of a single point of failure. This is a situation when a

failure of a single component can stop the entire system from working. An ironic

case would be when other components have high redundancy, but a failure of this

single point can still bring the whole system down. Take, for example, a database

server that uses multiple backup servers and replication to ensure availability if the

primary server fails. However, all these machines are serviced by a single router to be

accessed from the Internet. Even with multiple redundancy, a failure in the router

(or, for example, of the Internet provider) would completely disable the database

service provision.

Failure propagation happens over the structure of some systems. A failure in one

component can disrupt its service and thus become faults in other components that

depend on it (are linked to it). Section 2.2 saw a discussion that a fault-free system

does not exist, and a fault in some component may create an error, which in turn

can become a failure propagating to other components. The “Swiss Cheese” model

of failure propagation [Rea97] suggests looking at systems as layers where failure

propagates when latent faults and active failures align given the circumstances. Such

cascading failure points to a weakness that needs to be identified.

The role of structure in the dependability of such systems is in restricting such

errors from causing a failure. A structure governs component system interactions

with each other by enabling interactions between some components while forbid-

ding them between others (i.e. it creates a modular structure). This limits the

failure propagation paths in the system. Then, on these paths, redundancies or

other fault-tolerance measures can be established to stop the failure from propa-

gating (providing means of error confinement [JR06]). One example of such error

confinement is the physical structuring of watertight bulkheads used to create com-
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partments in ships [JR06]. If one compartment is breached and filled with water,

the rest of the structure (and ship’s ability to float) is not affected—the error is

contained. Similarly one can see the construction of a bridge to be error-confining.

A bridge is built with a high level of redundancy, so that if one part fails the load

is distributed through the structure and thus a single component is not able to

cause the collapse of the entire bridge. Structuring in such way allows management

of the failure propagation—establishing fault-tolerance. Note that large or very

complex systems require additional care with their structure. Modularisation and

fault-tolerant structures can be infeasible or introduce additional risks. There is

a real danger that modularisation and component isolation may result in a faulty

structure.

The structure of a system might be difficult to determine. This thesis considers

systems of various natures, such as human, technological or civil-engineered. In

some cases, the system structure may be clearer, e.g. when describing computer

systems hardware or civil engineered systems. However, the view becomes less

clear when talking about human systems (organisations) [JR06]. The “boundaries”

of a single human specialist “system” could be described by to whom he reports

(how information flows), what are his activities, etc. However, the documented

responsibilities may not reflect reality, where the activities of a specialist can shift

arbitrarily (e.g. covering for a colleague). This may be different across various

human systems, e.g. military systems are obligated (and thus more likely) to follow

rules and chain of command, while university (academic) systems are more ad-hoc.

Different deciding factors can figure in designing the structure of a system. Cost

can be a limiting factor in real-life situations and is discussed further in Section 2.5.

In conclusion, it is important to include the structure concept in a system de-

pendability analysis not only because structure determines system behaviour, but

because it may help identify the single point of failure, weak links or patterns for

failure propagation in the system.

3.5 Formal methods and formal specification

Formal methods are mathematically-based techniques to describe and reason about

systems, in particular software and hardware computer systems. Formal meth-

ods aim to increase assurance in the system and achieve system correctness—

mathematical techniques with tool support can allow identification of mistakes
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and inconsistencies even before the system is tested. Furthermore, one can ben-

efit from analysis and verification with mathematical rigour at any part of system’s

life-cycle: requirements engineering, specification, architecture, design, implementa-

tion, testing, maintenance and evolution [WLBF09].

Formal methods have mostly been used by academia in computer science do-

mains. Historically, industry has found most use in development of critical systems,

where very high assurance is required. An overview of the most recent state, chal-

lenges and benefits of formal methods’ application in industry5 is given in [WLBF09].

The survey highlights good effects of formal techniques on time, cost and quality

of systems development: estimated three times reduction in required time and five

times in cost as well as quality increase in 98% of cases (no reported decreases).

The improvements were reported in detection of faults, improvements in design,

increased confidence in correctness as well as improved understanding of the system

being developed.

The increased quality and confidence can require high level of manual effort and

appropriate skills and training to apply formal techniques and tools. The survey

acknowledges, however, that increased levels of automation and computing power

over the years will help with adoption and use of formal techniques in more main-

stream projects [WLBF09]. Hinchey and Bowen [HB95] provide another survey on

15 different applications of formal methods in industry, detailing the experiences

from telecommunications, nuclear power, railway, aerospace and other industries. A

quite recent account of a large-scale formal methods application is available from

the DEPLOY research project [RT13]. This research project aimed to introduce the

Event-B [Abr10] formal method to industrial organisations in different domains: au-

tomotive, railway, space as well as business information sectors. The results agree

with the survey in [WLBF09] that applications of formal methods is practical with

significant improvements in quality assurance and development processes [RT13].

As mentioned above, formal methods encompass various techniques and can be

applied in all parts of a system’s life-cycle. Several possible aspects of use:

• Writing formal models and specifications of the system—various mathemat-

ical notations and concepts are available to allow precise and unambiguous

descriptions.

5The survey covers mostly computer science industry applications of formal methods.
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• Formalising system requirements, assumptions and overall description—use

similar techniques to give precise meanings when discussing the system.

• Specifying properties and queries about the system based on its mathematical

description.

• Formal rules for how to transform and refine the abstract model or specification

to a concrete one—ensure that assumptions made at the abstract level still

hold for the implementation.

• Verification using theorem provers, model checkers and other tools.

• Checking the specifications or descriptions for consistency—ensure that re-

quirements are not contradictory, ensure that the described system is viable,

etc.

For the purposes of this thesis, formal methods should be taken to mean for-

mal specification and verified development of software and other systems. This

section aims to introduce some aspects of this approach and hint at how one could

benefit from using them in describing and reasoning about infrastructure systems

dependability. One important benefit of employing formal techniques is an increased

precision in defining dependability notions: fault, error and failure. Jones [Jon03]

suggests that by having a formal system specification, one can reason about the

correct service of the system and thus what would be considered a failure, error or

fault in that system. Specification is a technical contract between system developers

and clients to establish a common understanding of system behaviour. By having

a specification, a subjectivity about system failure is removed: a system service or

state deviates from the correct one when it is inconsistent with system specifica-

tion. Dependability is defined with respect to a specified behaviour (e.g. a system’s

specification) [GIJ+02].

When employing a top-down approach to system development, one should con-

sider and start with an abstract view and corresponding abstract specification. For-

mal methods are especially beneficial in preparing abstract formal specifications.

They can provide a precise description of what the system has to do and postpone

discussing of how it is to be achieved [WLBF09]. With abstract specification, sys-

tem developers have a clear framework to work within but are free to choose the

actual implementation details, as long as the abstract requirements hold.
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Formal specification and modelling is the most widespread use of formal methods—

[WLBF09, Sect. 3] reports this technique to be used by the majority of surveyed

applications of formal methods. The specifications are first and foremost used dur-

ing system design phase to record and clarify the requirements, to inform system

design as well as identify and remove faults at the early stages. The specification

can also be verified to ensure, for example, that intended safety properties indeed

hold for the designed system. Subsequently, the specification can be used in the

development and testing phases, e.g. the specification can be refined to a concrete

implementation, some program code can be generated directly from the specifica-

tion, the specification can be used to generate test cases, etc. These are some of

the possible uses of formal specification—[WLBF09] provides a wider overview of

important applications.

Formal methods and languages such as VDM [Jon90], Z [WD96] and others

provide mathematical notations and concepts to write formal specifications. With a

focus on abstraction, they provide description tools to describe system contracts and

avoid unnecessary implementation details. This way, the system and its behaviour

are described at boundaries. For example, system operations (transitions, user

actions, etc) can be described using pre- and post-conditions : indicating only what

is needed for an operation to succeed and what will hold afterwards without saying

how it will be done. This allows describing interactions between systems in a system-

of-systems as interface contracts. This can also be extended to interactions between

a system and its operational environment—assumptions about the behaviour of the

world can be recorded formally [HJJ03, JHJ07].

This approach to system specification has several benefits. First, the inter-

actions between systems in question are clear and well-defined: all requirements,

services and assumptions about each system are written down as the system in-

terface (see also further discussion on assumptions in Section 3.2). Furthermore,

interface contracts allow the internal system of constituent components (can also

be systems) to change, as long as the contractual interface specification is re-

spected [PBFR12, GIJ+02]. This also applies to system dependencies—alternative

implementations can easily be swapped if they have the same interface contracts.

Explicitly specifying assumptions on the environment is important (see Sec-

tion 3.2). Jones et al. [JHJ07] use rely conditions to specify physical world require-

ments for correct function of a software system. This allows avoiding the modelling

the explicit of real world components. Rely-guarantee reasoning [Jon81] addresses
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the concurrent nature of real-world interactions and allows specifying assumptions

that are required to hold during some system operation or transition (rely condi-

tions), as well as what system properties can be guaranteed during the said operation

(guarantee conditions). This is an extension of the classical pre- and post-conditions,

which are only concerned with before and after the operation, not during. In ad-

dition to specifying the assumptions about the physical world, Jones et al. [JHJ07]

present a systematic way of deriving the system specification from these assump-

tions. This is a good illustration of the top-down approach, where at first only the

very abstract interaction with the world is known and the further details are derived

and introduced during the system development. Note that the real world is often

perceived via sensors and therefore assumptions involved should consider issues with

sensor service, e.g. data validity [MC10].

This thesis does not attempt to apply full formal development to infrastructure

systems but instead aims to indicate how this could be done. For that reason, de-

tailed introduction of formal specification and development concepts and constructs

is avoided. The reader should refer to appropriate literature of the available formal

methods (e.g. Vienna Development Method (VDM) [Jon90]) for more details. A

brief introduction of the main concepts mentioned in this thesis follows.

Formal methods and languages like VDM [Jon90] or Z [WD96] frequently de-

scribe the system and its behaviour as a model of system state and operations.

System state is used to collect a system’s structure, main components and proper-

ties. Invariants are logical expressions about the system state and specify what is

always true about the system. Note that one could have several system states, e.g.

the correct one and various error states.

Systems are rarely static: they can have various transitions, user operations

and other events. These can be modelled as operations, describing how the system

state changes and its various inputs or outputs. To avoid specifying how the oper-

ation is actually implemented, pre- and post-conditions describe what is expected

before system operation and is established after. Furthermore, rely-guarantee rea-

soning [Jon81] can be used to talk about what is expected and established during

the operation.

Correctness of system development can be verified using further techniques, such

as data reification [Jon90]. They are used to establish a formal relationship between

the abstract specification and the concrete one. More concrete specifications can

introduce additional concepts, provide details to operations and link all the way to
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the actual implementation. Reification (also called refinement) rules require that

concrete specification still adheres to the requirements and properties indicated in

the abstract specification. Furthermore, this gives a formal basis to dependability

notions, because it offers a precise notion of what it means for a system to satisfy

a specification. The link between system B and its specification A is established

by showing that for each operation described in the specification A, there is a

corresponding system B operation that respects the specification in A [Jon03].

This thesis advocates at least a light use of formal methods in infrastructure

systems, namely formal-like specifications and refinement ideas to describe the vari-

ous systems-of-systems. The verification and associated tools can increase assurance

further, but would require special skills. Formal specification, however, is worth con-

sidering as a starting point given the complexity of the systems, different viewpoints

and the discussion in this thesis how important it is to agree upon and be precise

about the analysed infrastructure systems. Note that while this thesis provides only

a brief overview of what formal specifications are about, significant examples of for-

mal specification use are available in the literature. For example, the Tokeneer ID

station [CB08] describes an entry system to a secure enclave and its formal specifi-

cation has been released as a demonstrator project of secure software engineering.

The case study of the Mondex smart card system [SCW00, JW08] is also worth

mentioning. Verification of its formal specification was set as an academic challenge

and was done (including redoing the specification in many cases) using different

formal methods and approaches.

3.6 Application to infrastructure systems

This chapter has investigated benefits and techniques of applying a top-down de-

velopment approach to complex and critical computer and other systems. The

hypothesis of this thesis proposes that taking such a development and analysis ap-

proach with national infrastructure systems would be advantageous in their design,

analysis and reasoning about their dependability. This section now aims to demon-

strate how such an approach could be applied to infrastructure systems: how it can

be used to construct system-spanning arguments without getting lost in irrelevant

details, provides hints on how one would build up a formal model of connected

infrastructure systems, and offers some comparison with bottom-up approaches.

Historically, national infrastructure planning has been a sector-centred effort
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that focused on addressing issues of one specific infrastructure sector. There were

different methods tailored to reason about and deal with the specific sectors: en-

ergy, water, transport, waste, ICT and others (see Chapter 5). Following this, the

current infrastructure sectors were built independently—lacking in analysis and in-

sight of inter-sector dependencies. Modern infrastructures, however, exhibit high

interconnectivity between each sector and therefore should be analysed in a holistic

way. This requires arguments about national infrastructure as a whole (e.g. about

its functionality or dependability) to span multiple sectors and include components

from various infrastructure systems. To avoid taking every irrelevant detail into

consideration, one needs to specify the level of abstraction to the reasoning. By

taking a top-down approach, an abstract argument is first constructed, which is

then refined to include more detail where necessary. The remainder of this sec-

tion provides some views on constructing a model and reasoning about it for some

abstract infrastructure system.

Note that applying top-down development to systems involving real-world phe-

nomena requires additional caution (compared to applications to mathematical do-

mains). Jackson [Jac82] argues even more broadly, that lack of competence in the

early top-down development stages of any system can result in significant errors at

low-levels of design. Top-down development requires taking significant decisions at

very early stages. An erroneous decision at the abstract level would ripple through

the refinement process and could result in a concrete design of a system that does

not have any implementation options (or has significant obstacles and is not viable

for implementation). Jackson argues that top-down development is more of a sys-

tem “description” than actual “development”, with the actual development already

largely completed invisibly in the designer’s head [Jac82]. Furthermore, abstract

modelling provides more freedom than may be allowed by the available real-world

implementations. Naive design decisions at the top level may describe a “perfect”

system in an elegant manner, but would fail finding actual implementation that sat-

isfies the conditions required by such design. For example, one could design a safe

distance between nuclear power plants that would exceed the area that is intended

to build them. Finally, caution must be adopted when describing real world objects

using mathematical constructs to avoid oversimplifying them. Jackson [Jac00b]

notes that formalising reality is always an approximation and is thus prone to er-

rors arising from that. An example illustrating such a case would be assuming a

switch having just the on/off states, while it can actually be on/off/“something in
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between”.6 To avoid such issues in applying top-down development, the assump-

tions about the real world should be identified and considered at appropriate stages

of development. Furthermore, expertise within the domain as well as in top-down

modelling is needed. Still, as with any development process, mistakes may occur

and rework of affected parts would be needed.

3.6.1 Role of existing infrastructures

Top-down development starts by taking an abstract view of a system. The level of

abstraction is chosen to be as abstract as possible whilst still being able to discuss

properties of interest. The aim is to identify and specify the required functionality

and important properties about the system in question before writing the details of

concrete realisation. For this reason, existing components (e.g. existing software in

computer systems) are ignored at the abstract level. The idea is that the abstract

specification of a system can be refined to various different concrete implementations.

So at the abstract level, one should clearly describe what is expected of the system,

what are its properties, etc., without being concerned, for example, with lower level

physical constraints.

For national infrastructure, this raises the question of existing infrastructure sys-

tems. They do not allow one to start designing and reasoning from scratch. To take

the top-down approach, one should ignore them at the abstract level and focus on

the abstract functionality and dependability properties, ensuring a correct abstract

specification. Then, during refinement of the abstract model towards a concrete

implementation, the existing infrastructure could be shown to satisfy the conditions

of the abstract model or specification, or adapted to match the new requirements.

A planned reuse of existing infrastructure systems would involve including the spec-

ifications of said systems into the reasoning of the overall infrastructure design and

showing that the abstract specification is adhered to, thus preserving the original

correctness of the specification.

The idealistic approach of top-down development may raise concerns when deal-

ing with existing systems. However, there is evidence from computing that such

a thought experiment can actually be a practical approach. Conventional wisdom

would say that some large software systems (often having grown quickly and without

detailed planning) are so valuable that any thought of tackling them with a top-

6The three-state device in question is a valve closure mechanism involving a solenoid and a
spring. The example comes from the Three Mile Island accident description [Fer92] via [Jac00b].
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down approach must be dismissed. IBM’s “CICS” (Customer Information Control

System) was just such a result of minimally controlled evolution [HK91]. However,

around 1980, the need to make major changes to the functionality of CICS meant

that the mass of poorly documented code had to be brought under better intellec-

tual control. The decision was made to undertake a formal specification. This was

a large undertaking and was only made possible by a novel collaboration between

IBM and an extremely strong group from Oxford university (with Rod Burstall

and Cliff Jones as consultants). The result was a much cleaner structure and a

Queen’s Award for Technological Achievement to Oxford university [HK91]. The

CICS example illustrates that very complex existing systems can be incorporated

in the design of a new system using the top-down approach.

In spite of the huge investment in such software systems, it is certainly not

claimed that this experience suggests that physical infrastructure systems would be

scrapped and rebuilt in accordance with a plan that was devised top-down from

a clean sheet of paper. The costs of the existing UK infrastructure for power,

transport, etc are greater than software costs by orders of magnitude. What a

top-down view can offer, however, is a fresh viewpoint and a goal towards which

evolutionary changes can be directed.

Taking the idealistic “world planning” situation for the infrastructure systems,

the top-down development would start at the abstract level by recognising national

infrastructure as a single connected system. The shape of the model and direction

of reasoning would be driven by which properties and requirements are interesting

and important to the system analysis.

3.6.2 Purpose of reasoning and model

When starting a top-down development of a system, one needs to identify the pur-

pose of the model being developed. This will then shape the level of abstraction

and the included concepts within the abstract model. Some could purposes be the

following: domain modelling of a system, describing and reasoning about some non-

functional property (e.g. dependability) within the system, or defining functional

properties (e.g. how the system is supposed to work)—writing down the specifica-

tion of a system.

Domain modelling is used to improve understanding of a system by identifying its

component systems and revealing its structure, how components are linked together,

etc. When reasoning about national infrastructure systems, a domain model of in-
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frastructure can be used to reveal, identify and formally specify interdependencies

between systems. For example, using formal methods, one can specify boundaries of

different systems with mathematical rigour, and then link them together, ensuring

that all interfaces are matched. Then these interface matches become interdepen-

dency specifications.

When reasoning about dependability of a system, it can be described as certain

properties holding over the model. For example, the failure propagation property

could be formulated as “a failure in one system does not activate a fault (all sys-

tems have faults) in an other system”. This property can be described formally

over the whole infrastructure (spanning different infrastructure systems). Nor-

mally such a property would be composed of properties over different types of

faults/errors/failures. Note that to reason about a system holding such a prop-

erty, one must justify it for all systems defined in the model. Then the refinement of

the model has to be done in such way that the property would hold for the more con-

crete model (see below for more details on abstraction). However reasoning about

subsystems that are not defined in the model at certain abstraction levels is not

allowed.

A functional specification is used to describe how a system being designed im-

plements its function. In systems design, it captures the requirements of a system,

which must be satisfied by the concrete implementations. The formal specifica-

tion would define transformation from input to output. Furthermore, it can be

checked that the requirements are consistent. Note that different levels of abstrac-

tion could feature different details of the functionality requirements. The case study

in Chapter 6 offers further hints on how a specification could be constructed for in-

frastructure systems.

These different goals lead to a better understanding of different facets of the

system. For a complete analysis, one could benefit from a combination of all of

them by exploring them at different stages of analysis. Domain modelling tends to

utilise higher-level abstractions, while functional modelling frequently spans lower-

level details of the designed system.

3.6.3 Abstraction

An abstract model of a system allows us to focus on just the components relevant

to the specific analysis, thus avoiding the need to describe the system in detail at

the beginning. This allows description of a certain facet of a complex system as a
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simpler but still representative abstract system in order to improve understanding

of the original one. Note that abstraction can also be utilised to provide different

“points of view” on the same system, not just a single “abstract” view.

The initial level of abstraction should reflect the taken viewpoint or the problem

being modelled. As a trivial example, consider a model of electricity being supplied

to a house. At the very abstract level, one may only want to describe the property

that electricity is being generated and supplied to the house. So the highest level of

abstraction would only involve entities of electricity generator and the house, with a

supply link between them. This is enough to capture the notion of electricity being

provided and does not include irrelevant details. When examining dependability

properties of such a modelled system, one is quite restricted in how detailed they can

be. An interface of the generator at this level would be limited to “generator provides

electricity”. Then, only one failure could be specified: “generator stops working”—

the OFF state. This is because the model does not include any details about the

generator or how the electricity is delivered. However, the arguments constructed

are well founded, since the model includes everything being talked about.

During the course of system design or analysis, this high-level view would be

refined to a more concrete system model including additional high-level concepts,

components that support further analysis—down to concrete implementation de-

tails. For example, another level of abstraction for the above model could introduce

the concept of cables. Cables deliver electricity from the generators to the house and

link these components. At this level, the abstract generators are replaced by linked

cables and more concrete generators, e.g. represented by entity generator2. This

allows one to refine the interfaces, system properties and reasoning about causes of

failure. Additional components introduce further faults: now the system can fail

when either the more concrete generator fails, or when the cables fail delivering the

generated electricity. This way the properties of interest are enriched with further

detail, but the model still contains only the relevant details.

When the analysis includes several properties of interest, a good way to structure

the development process is to start with the most abstract properties (ones that

require the least detail). Then further properties are introduced during refinement

(see below), thus ensuring that the previous properties still hold.

The example above is very abstract and only aims to illustrate how one could

start thinking about infrastructure systems from the very top. However, depending

on the purpose of the model, one could just as well start at a more detailed level.
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If, for example, a property being reasoned about requires quite detailed concepts, it

should be included from the start without artificially creating levels of abstraction

that will not actually be used. So in the above example, if the property of interest

is concerned with the cables, that second level should be the one to start with.

3.6.4 Assumptions

Assumptions are used for circumscribing components in the model that will not be

modelled explicitly. Following the rule that reasoning can only talk about things

that are in the model, such components and their properties need to be part of

the model. By writing an assumption (e.g. using rely-guarantee rules), one can

describe how the modelled part will interact with that external component, but

avoid modelling it in this way.

To illustrate, a simple example about electricity generators being cooled with

some water system is given. The electricity system is the one modelled originally.

Since it can overheat, it needs to be written down that for correct operation, electric-

ity generators are cooled correctly to prevent failure from overheating. The cooling

is not modelled explicitly here and is therefore written down as an assumption “gen-

erators are cooled correctly.”

In the event of the model being extended with water infrastructure, it could

be chosen that water will be used for cooling the generator. When the water and

electricity system models are combined into one, the assumption becomes an internal

interface between the generator and the water-cooling system. Depending on the

abstraction level, that could be left as “water system is enough to cool the generator.”

Alternatively, one can choose to model in more detail, e.g. “the temperature of the

generator is always less than 50 ◦C.” However, in this case, temperature and other

related variables must be modelled in the system. It would become important to

know how to measure and retrieve the temperature of the generator, how it changes,

what affects it, what are acceptable intervals of measurement, etc. Further details

about the water-cooling system would also be necessary: how the water system cools

the generator, what are the limits of its power, how it is measured, etc. These details

do not need to be modelled explicitly, though, since they could be written down as

further assumptions—the cooling system is modelled, but not in its entirety, it must

respect the given assumptions.
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3.6.5 Structure

In complex systems, structure dictates the behaviour of the whole system by linking

its components in a certain manner (see Section 3.4). When constructing an abstract

model of a system for analysis, structure would also be defined in an abstract way.

It would link abstract entities in the model instead of replicating a real-life concrete

configuration. Consider the earlier example of a house being supplied with electricity

by generators via cables. All these are abstract entities, thus they could have an

arbitrary structure, e.g. a house may have several electricity supply cables, which

would in turn deliver electricity from different power generators. The model thus

would specify the general state of a house having multiple cables (thus covering all

possible variants), which in turn are linked to multiple generators, which can be

shared between the cables.

In this model, one could define properties to analyse, e.g. failure propagation. By

employing various reasoning techniques, general configurations that would satisfy

the property can be identified. For example, one may discover a situation where at

least two cables connecting at least two shared generators to the single house are

required to avoid some specific failure propagation. When constructing a specific

instance of the system, with a specific set of houses, cables, generators and links

between them, it would be necessary to verify that they satisfy these discovered

conditions (that refinement is correct). Then the failure propagation properties

discussed at the abstract level would hold.

3.6.6 Refinement

The idea of top-down analysis is that one starts with an abstract (high-level) model

and then step by step transforms it into a concrete (low-level) model. A set of rules

on how one could perform such a transformation is called a refinement (or reifica-

tion) [Jon90]. Refinement rules ensure that the properties specified at the abstract

level hold for the concrete one as well. This allows structuring the specification in

a way that allows reasoning about it at an appropriate level.

During refinement, properties can be replaced by more concrete versions of them-

selves as the model is enriched with more details. The following example illustrates

such a mapping using the model of the electricity system being cooled described

above. To prove the refinement correct, first the mapping between the concrete

and abstract states must be verified. Such mapping is called the retrieve function
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and it defines how find an abstract state that is represented by the given a con-

crete state. The retrieve function must satisfy two properties to establish a correct

mapping: totality and adequacy [Jon90]. A total retrieve function ensures that all

concrete states have some abstract state they represent. The adequacy shows that

all abstract states are accounted for, i.e. there is at least one concrete state for every

abstract one. With the retrieve function defined, the system operation refinement

can be checked: an operation of a system performed at the more concrete level must

correspond with the respective operation at an abstract level. Refer to [Jon90] for

further details on data and operation refinement.

Consider an electricity-generating system that needs to be cooled. At the ab-

stract level this would be defined as an invariant “system is cooled enough”. All

operations at the abstract level that manipulate the system state, such as “produce

a unit of electricity” preserve this invariant, thus applying such an operation on a

valid state produces another valid state.

At the more concrete level, the property “cooled enough” can be specified as

an invariant “system temperature is less than 50 ◦C ”. A retrieve mapping between

the abstract and concrete properties would link that “enough” is equivalent to “less

than 50 ◦C ”. Showing the totality and adequacy of this mapping is trivial: there

are two of each abstract and concrete states, i.e. “enough” and “not enough” at the

abstract state, and “less than 50 ◦C ” as well as “more or equal than 50 ◦C ” at the

concrete state, where the property values map respectively in both directions).

The refinement of operations would include the “produce” operation becoming,

say, “generate 1 kW of electricity”. This would include details on how much heat this

generation produces and how the cooling system works to compensate the increase

in temperature.

To prove the refinement correct and thus to show that the abstract property of

“cooled enough” holds at the lower level of abstraction, one needs to analyse how

the operation affects the concrete state in relation to the corresponding abstract

operation. The operation “generate” is performed on a concrete valid state where

the temperature is less than 50 ◦C. Now there could be two cases that can happen

during reasoning. Say that the operation produces a state where the temperature is

40 ◦C. When mapped back to abstract state, this maps to “cooled enough”, which is a

valid state produced by the abstract operation as well, thus the refinement is correct.

Alternatively, say the temperature becomes 60 ◦C. Mapped to the abstract state, it

will yield “not cooled enough”. From this it follows that the concrete operation does
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not reflect the abstract one (and the concrete system does not correspond correctly

to the abstract one). Therefore the refinement is invalid and properties defined at

the abstract level may not hold for the concrete one.



Chapter 4

Systems generating systems

Leading to this chapter, the thesis explored dependability and failure propagation in

systems that are deployed or built upon each other. It covered conventional systems:

the actual systems being built, e.g. infrastructure systems or computer systems from

which the concepts are borrowed. This chapter proposes to expand these concepts

to include the planning (design) process as another system in the whole analysis.

Such systems, which can be thought of as systems generating systems or systems

changing systems can also produce failures that give rise to faults in the actual

infrastructure systems. Therefore they can also be treated with similar rigour,

and benefit from dependability analysis and reasoning techniques in the manner of

conventional systems.

In a complex system of systems, the component systems interact with and depend

on each other through certain interfaces between these systems. This interaction

can give rise to failure propagation: when a failure in one system manifests a fault

in another one. The fault then can trigger an error state that can result in a system

failure. When performing analysis of the failure, one can track this chain of failure

propagation back to the source, for example, to eliminate the original fault or add

adequate fault tolerance measures.

In conventional systems, the origin of this chain may be some latent fault already

existing in the system. This chapter proposes to look further beyond the boundary of

this system where such faults could actually be created by failures in system design,

development, maintenance, etc. An obvious example from computer science is a bug

in a computer program. The bug is a fault which can be triggered, for example, by

certain inputs, to put the program into an error state (that produces a failure, that

can in turn produce erroneous input to a dependent program, thus propagating the

failure). The bug is actually caused by a failure of the programmer (or designer,

51
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architect) developing the system. Looking even further, one can explore the faults

in the development (design) process that lead to the programmer making the bug

(failure). This suggests that analysis of the system development process may lead

to understanding and reducing faults in the resulting system.

When taking the top-down approach, an abstract view of the system is first

developed and then refined to a concrete realisation. Thus for such an abstract

approach, the “creation” of the system is its planning and design process. This

chapter explores the H3 hypothesis, which proposes inclusion of the planning process

of a system that comprises the eventual infrastructure in the overall dependability

analysis. The idea is generalised to “systems-generating-systems”, i.e. any systems

that give rise to future (or change existing) infrastructure systems.

The idea is to extend the system concept to capture the planning, development

and maintenance processes as just another system, thus leading to the position that

“everything is a system.” The source of failures can then be traced into these “gen-

erating” systems. The analysis of infrastructure systems would then include systems

outside the conventional infrastructure. Take, for example, a train crash whose im-

mediate cause appears to be the driver crossing a red signal (failure in transport

infrastructure). Depending on the scope of the “systems” under consideration, this

failure could be treated as being caused by poor signal position (failure in planning

system) or by inadequate driver training (failure in human systems).

By treating the “generating” systems as just another system, one can try extend-

ing considerations about failure propagation, fault tolerance and interdependency

analysis of planning or development stages to be similar to ones in physical in-

frastructure systems. The belief is that a planning process included as a system

in infrastructure system analysis might help raise different questions about system

dependability. Hopefully, that would give a better perspective to understand and

analyse interdependent national infrastructure systems.

4.1 Planning as a system

To describe the planning or design process as a system, one needs to identify its

functionality, boundaries and how it interacts with other linked systems. Note

that the relationship between the generating system and the generated one (actual

system that will comprise infrastructure) is logical. This interdependency cannot be

described as information or resource flow between generating and generated systems,
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because the planning system changes the generated system itself. So the actual

generated system is an output (and input) of the planning system.

This leads to the interface of the planning system. Section 3.3 argued that the

whole system can be described at its boundary, which consists of function descrip-

tion, assumptions, requirements and other information, providing different views of

the system. From its function perspective, a planning system interface consists of

requirements for the plan (design), environment description as well as the existing

infrastructure system data as the input and then the completed plan, design or the

new infrastructure itself as the output.

Depending on the level of abstraction, such planning systems can actually be

decomposed into constituent systems. Note that an abstract infrastructure system

would correspond to the abstract planning system. For example, at a very abstract

level, an infrastructure system could be represented as an abstract model or specifi-

cation. This model or specification is then the output of the corresponding planning

system. The planning system could be described at any level of abstraction, but

introducing unnecessary details for planning abstract infrastructure would not bring

much benefit. For example, if the infrastructure system model is only an abstraction

at this point, detailed descriptions of construction or deployment systems as part of

the planning system could be considered somewhat excessive. The high abstraction

level of the infrastructure system suggests that in the planning system analysis there

is no need to introduce low level details as well.

If top-down approach is employed for infrastructure analysis, further steps in-

troduce additional details into the infrastructure, down to realisation details. To

follow this, the concept of its planning system should be refined to match the level

of detail. This may require splitting it into sub-systems, e.g. design, construction,

deployment, but yield the constructed infrastructure as the output of the whole

planning system-of-systems.

In failure propagation analysis of a scenario involving a complex system-of-

systems, the fault-error-failure chain could span both the physical and the planning

systems. Within the physical system-of-systems, development faults are part of the

component systems and the chain happens when a failure in one system activates a

fault in another one. For “systems generating systems,” a failure in the generating

system creates a fault in the generated one. The act of fault tolerance in planning

would result in elimination of the said fault, not prevention of its activation.

This difference of relationship between the planning and the generated system
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introduces the separation between these systems. Therefore the dependability anal-

ysis would include considerations about both the generating and generated systems,

however they would be analysed separately.

The planning system with its connected systems can be analysed as a system-

of-systems itself. The most common example is a planning system comprised of

different organisations responsible for different parts of infrastructure. This thesis

argues for a holistic view of infrastructure system-of-systems: the analysis must

encompass all infrastructure systems. The same approach must then be taken when

analysing their planning systems: analysis must take into account all participating

organisations, institutions and governmental bodies that plan, design and develop

the infrastructure systems.

Note that parallels can be easily identified between the structures of the gener-

ating and generated systems. Organisational structures often reflect the structure

of their designed system. The direction of “which mirrors which” is actually an

interesting sociological observation. At the high level, it is the system that influ-

ences organisational structure, e.g. each infrastructure sector is often governed by

a corresponding organisation or institution. At lower levels of system structure,

however, one could assume that Conway’s law would hold: “the structure of the

system mirrors the structure of the organisation that designed it” [HG99].

In most cases, different organisations are responsible for different interdepen-

dent systems. Within an organisation, separate interdependent components are

frequently developed by different management teams. This can lead to a level of

separation, incompatibility and mismatched interfaces between the designed compo-

nents where organisational links are faulty. A famous example of incorrect assump-

tions between organisations led to the Mars climate orbiter being lost in space. The

separate software components were developed by two different companies: NASA

and Lockheed. Miscommunication on measurement units used (imperial vs metric)

led to incompatible components and failure in the probe [NAS13].

4.2 Addressing failures of planning systems

The planning and development process of an infrastructure system can consist of

multiple subsystems and therefore have failure propagation as well. The mismatched

interfaces between planning systems as simple as in the NASA example above can

create major faults in the resulting generated system. Faults are created by failures
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that propagate outside of the planning system and manifest in generated results

(model, specification or the final created infrastructure system). To avoid failures

affecting planning system services, they should be identified and addressed using

appropriate fault tolerance measures.

In computer science, various process models have been developed to facilitate

good interaction and collaboration between organisational units to lead to a correct

computer system. They offer frameworks to ensure the quality of development

output that incorporate testing, review and other similar phases. These can be

considered fault tolerance measures to catch and address failures of system designers

or developers. Such process models from computer science and other domains could

help answer questions and solve issues identified during analysis of the planning

process as a system.

For example, one may try to avoid problems with mismatched interfaces by hav-

ing a central body to regulate the construction of each subsystem. If examined

in an abstract configuration, however, this could yield a single point of failure in

the central body. Thus if a failure happens here, it may affect all planning sub-

systems and therefore produce a system-wide failure. An alternative could be to

avoid the single point of failure by having more independent design teams (planning

systems) or review of the central body activities. Expert review is one possible

fault tolerance measure for planning systems. Following the proposed approach, it

should also be treated as a system and described at its boundary: the expert review

process provides the review service and would catch existing failures but, say, only

with assumptions that the experts have adequate expertise and skills, the review is

performed in a formal manner, etc.

The planning system can be considered as one of the judging systems for failures

in infrastructure systems. The information about infrastructure systems can be

collected via various means (sensors): users or operators, automated (computer)

systems analysing failures, etc. They would identify failures and their context and

report to the design or development systems for improvement. So the operators can

have a dual role of being part of an infrastructure system itself as well as being part

of the planning system (identifying, judging and reporting failures, or even changing

the system via workarounds!).

This chapter argues that planning systems can be subjected to the same frame-

work of description and reasoning. They exhibit properties and concepts parallel

to ones in conventional systems: boundaries, human failures, failure propagation,
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fault tolerance measures, etc. The ideas can be extended to as many meta-levels as

required: the planning system could have another one that generates it (planning

of planning). Consider a government devising a plan to create an infrastructure

system and setting up the process of how the infrastructure will be developed. Note

that failures at this level of planning would likely have a major impact to the final

infrastructure system through failure propagation (faults would be created in the

infrastructure planning and construction process, which would affect the created

infrastructure system when activated). For this reason, adequate expertise is vital

for people working at the “planning of planning” systems.

The analysis of a planning system as another system could help identify origins

of faults in infrastructure systems and design fault tolerance measures for system

design and development processes. This chapter provides several small examples

related to infrastructure system design. Some more insights in to how the framework

could be used to describe the planning system are available in the case study (see

Section 6.3).



Chapter 5

Problem background and

related work

The economy and modern society strongly rely on provision and availability of in-

frastructure services. The interconnected nature of infrastructures raises challenges

when failures occur, since a failure in one infrastructure can propagate to other

infrastructure systems and disrupt their services as well. Thus it is important to

understand and analyse these interdependencies and the dependability of infrastruc-

ture as a whole.

This thesis has proposed ideas on adapting existing dependability research in

computing science. The main focus has been on top-down development and formal

description and analysis of infrastructures, their dependability and relationships.

Note that the background and references for these ideas have been mentioned in

the previous chapters, where they have been presented. This chapter aims to give a

brief overview of related work and alternative techniques to description and analysis

of national infrastructure dependability.

The issues around infrastructure dependability have been examined by numer-

ous researchers and research projects. Historically, the focus had been to tackle

the complexity of a specific infrastructure sector or system and its failure and de-

pendability analysis. However, recent research addresses the interconnectedness

of infrastructure systems and takes a holistic approach to infrastructure analysis,

treating national infrastructures as “systems-of-systems”. The main focus is on

identifying and analysing interdependencies, especially ones that can cause failure

propagation.

This chapter provides some notions to describe interdependencies of national

infrastructure and then introduces some common approaches, methods and tech-
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niques that researchers employ to tackle interdependent infrastructure systems and

failure propagation analysis.

5.1 Describing interdependencies

The holistic approach to infrastructure analysis has been advocated for modern

infrastructures [RPK01, Lit03, Rin04, PF07], because it accounts for the fact that

current infrastructure systems are too interconnected to be analysed in isolation.

The classic approach of analysing each infrastructure by itself must be supplemented

by analysis of interdependencies between these infrastructure systems.

Some interdependencies are straightforward (e.g. energy powering other infras-

tructures), but some are less understood. Interdependencies are not necessarily

physical connections—they can be identified and characterised according to different

criteria. A general definition of (inter)dependency talks about the state of one infras-

tructure somehow influencing or correlating to the state of another one. Interdepen-

dency is “linkage or connection between two infrastructures, through which the state

of each infrastructure influences or is correlated to the state of the other” [RPK01].

Furthemore, Rinaldi et al. [RPK01] propose a taxonomy for how infrastructure in-

terdependencies could be described according to different criteria and categorised

them into four main classes:

• Physical interdependencies describe physical links with material flow between

inputs and outputs of systems in different infrastructures.

• Cyber interdependencies are concerned with information flow: the state of

an infrastructure depends on information (e.g. control events) transmitted

through the ICT infrastructure.

• Geographical (also spatial [Zim04]) interdependencies describe the impor-

tance of physical proximity: a nearby system can be affected by a failure in

another infrastructure.

• Logical interdependencies encompass all other types of connections. These

include relationships caused by political, social and other human decisions or

actions.

Moreover, Rinaldi et al. [RPK01] suggest that full description of interdepen-

dency requires a multi-dimensional analysis. Interdependency categorisation should
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consider the states and characteristics of infrastructure systems, the environment as

well as properties of the link itself (e.g. coupling, etc.) or the type of failure being

carried by the interdependency.

An alternative taxonomy for interdependencies has been used in [LMW04].

Lee et al. classify interdependencies by how they link related systems structurally,

not by what the link represents (note that these categories can be used for both

physical and other interdependencies):

• Input: provision of one infrastructure service requires input from one or more

services of other infrastructure.

• Mutual dependence: bi-directional dependencies between all infrastruc-

tures in a collection of infrastructures.

• Co-located: any physical components of infrastructure systems are located

in the same geographical area (arbitrary region).

• Shared (AND): two or more services share some physical components or ac-

tivities of an (another) infrastructure system.

• Exclusive-or (XOR): a specialised shared interdependency, which only allows

service for one infrastructure system at a time.

The identification and description of interdependencies can also be done using

different approaches. Eusgeld et al. [EHK08] state that the interdependency identifi-

cation process can be either qualitative or quantitative. The qualitative one requires

expert insight: expert interviews, round-table discussions or workshops to identify

and characterise interdependencies. However, the approach is also vulnerable to

failure in discovering hidden interdependencies. The quantitative approach is based

on computer simulation techniques and requires data about the infrastructures to

construct and run the simulations.

The framework and ideas proposed in this thesis lean towards the qualitative

approach. Top-down development would require expert decisions about the model

and relationships between systems but without the need for low-level empirical data

at the beginning. Furthermore, the suggested formal specification and mathematical

reasoning would improve assurance in the qualitative method.

The taxonomies above can be used to describe various different relationships

between infrastructure systems, but can result in too many possible relationships to
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consider in analysis. This hinders dependability analysis due to the sheer number of

possible connections in infrastructure systems: “everything is connected to every-

thing” [Mas06]. Depending on system properties, only some of them would actually

affect the said properties across the infrastructure system.

Regarding the dependability of infrastructure systems, Masera [Mas06] proposes

a dependability-orientated approach to describe interdependencies. He narrows the

view taken by Rinaldi et al. [RPK01] by relating interdependencies to the depend-

ability of systems. To analyse dependability, one must analyse failures within these

connections, thus only interdependencies carrying failure should be taken into ac-

count. This allows us to define interdependencies as connections between failure

mechanisms of two infrastructure systems, through which dependability of each sys-

tem influences or is correlated to the dependability of the other [Mas06].

Masera [Mas06] incorporates the chain of fault, error and failure (see also Sec-

tion 2.2) into his definition of interdependencies: they are connections that can

cause a failure propagation, i.e. where a failure in one system may be related to

negative effects in another. Thus in general, interdependencies are a threat to the

dependability of infrastructures.

This view of infrastructure dependability and interdependencies is similar to the

one used in this thesis. As presented in Chapter 3, the systems are linked together

via their interfaces. Interfaces feature description and assumptions of intended ser-

vice and the linkage must ensure these assumptions are satisfied, otherwise failure

may occur. Therefore, each link can carry failure from one system to another (see

also Section 2.3).

Note that the main questions that this thesis, and numerous other research

projects, try to address exist because the interdependencies are an inevitable part

of modern infrastructures. One cannot improve dependability by removing interde-

pendencies altogether, because the benefits of having high connectivity are signifi-

cant. This is best illustrated by extensive current and planned linkage of physical

infrastructure with information technology systems. ICT already affects the design,

construction, control and other aspects of infrastructure systems with many po-

tential future applications such as monitoring or management systems, distributed

and remote control devices, complex live data and information systems. All this

promises improved reliability and efficiency at reduced cost [Lit02].

Identifying and characterising interdependencies requires expert insight, and the

taxonomies change with different approaches. For example, some approaches distin-
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guish only between geographical and functional interdependencies; others categorise

interdependencies differently, e.g. control (SCADA—Supervisory Control and Data

Acquisition—systems) relationships can be treated either as cyber or physical. Note

that due to high complexity of infrastructure systems, modelling and simulation nor-

mally avoid considering all types of interdependencies and instead focus on narrower

views [EHK08].

Physical and geographical interdependencies are best understood and usually

included in the analysis. The examples and case study in this thesis also focus on

physical relationships the most in order to communicate the ideas using a familiar

domain. However, the framework is general enough to allow describing different

kinds of interdependencies. For example, assumptions can be used to specify re-

quirements on geographical interdependencies as well as various other relationships

(see Section 3.2). The assumptions would contribute to the overall dependability

analysis and would need to be verified during deployment for the reasoning to hold.

The ITRC project also initially focuses on these types, however cyber interdepen-

dencies are becoming more important due to the increase of computer-based control

and communications in infrastructures.

The different taxonomies mentioned in this section provide a language to talk

about different interdependencies. Furthermore, when designing a system, they pro-

vide guidelines of things to consider when describing infrastructure system bound-

aries.

5.2 Analysis of interdependent infrastructures

The current research techniques on analysing interdependent critical infrastructures

are most concerned with analysing existing infrastructure systems for risks of failure.

A number of modelling and simulation techniques are available in the literature (see

surveys in [PDHP06, RD06, EHK08, DPM06, KZ11]). This section provides a brief

overview of the most popular ones as well as some associated concepts.

The methodologies mostly work within the framework of risk (or vulnerability)

analysis of critical infrastructure systems. They aim to provide techniques for mod-

elling, assessment and management of risk [HSC+08]. The definition of risk talks

about failure probability and the extent of its consequences. Risk assessment aims to

address the main questions of what can go wrong in the complex system, what is the

likelihood of that happening and what are the consequences of failure to the system
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and its users [HSC+08]. Note that modelling and simulation techniques require such

concepts to be quantifiable: e.g. define probabilities of failure happening, establish

the extent and consequences of failure as monetary or otherwise calculable value,

etc. Furthermore, risk deals with concepts that are hard to quantify: e.g. the failure

can have impact on related social, economic and technological systems, it almost

always implies future events and numerous hazard and outcome scenarios [Hel07].

Vulnerability analysis is a narrower approach that focuses on the infrastructure

system itself. Vulnerability is a property of the system and is often considered to

be a fault that can trigger a failure when exposed to a hazard. Vulnerabilities

are quantified by the frequency of failure when exposed to a hazard as well as

by the extent of damages caused by the failure [KZ11]. Vulnerability assessment

of interdependent infrastructures aims to identify and quantify vulnerabilities in a

system. In addition, it can also be used to identify most frequent failures, devise

prevention or repair strategies [EHK08]. The concept of vulnerability is easier to

deal with than that of risk, because it is considered a property of the current system

and is more concerned with how the system can be affected instead of investigating

possibilities of future hazards happening (cf. risk) [Hel07].

Risk management follows vulnerability (or risk) assessment and aims to provide

measures to reduce vulnerabilities, improve resilience and address failure conse-

quences. This analysis also needs to consider trade-offs of taken measures and how

current decisions may impact future options for the infrastructure systems [HSC+08].

The risk and vulnerability framework provides questions to be raised about in-

frastructure system dependability and guides how to evaluate the results. The

methods described further in this section operate within this framework and pro-

vide tools and techniques to identify vulnerabilities and evaluate their effects. The

framework is comparable to ideas proposed in this thesis. Parallels between vul-

nerabilities and a fault-error-failure chain can be easily established. The full chain,

especially if defined formally, gives a more precise description of failure propagation

and thus clearer identification of vulnerabilities (see Sections 2.2 and 2.3). Vulner-

ability and risk assessment can be viewed as a bottom-up approach—it concerns

evaluating existing infrastructure and establishing properties about it. This thesis

advocates the use of a top-down approach, which raises these questions early in the

system design and development process, thus prompting developers to address the

vulnerabilities (see Chapter 3).

The infrastructures and their interdependencies are often modelled as complex
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networks. Infrastructure components are regarded as nodes in the network, and

their relationships captured as edges. Therefore interdependencies are edges which

join nodes from two different infrastructure networks [HDO11]. Complex network

theory approaches can be used to identify vulnerabilities. For example, metrics are

proposed that describe and quantify the system’s quality of service. The network can

be modelled as purely topological or with weights on edges to represent the strength

of the connection [KZ11]. A common approach then is the “what if” analysis, where

nodes or edges are selected (e.g. randomly) and their state is modified. The altered

system is re-evaluated under various scenarios using simulation and the outcomes

are examined to identify vulnerabilities [DPM06]. To address vulnerabilities, these

models can include fault tolerance measures, e.g. buffering [SW07]. Furthermore,

various different metrics are available to describe system vulnerabilities in terms

of the interdependencies: e.g. connectivity loss (calculates ratio of available con-

nection paths before and after failure) [HDO11], temporal scale of interdependency

(considers durations of infrastructure service outages) [MIA10, CBB+11], etc.

Another interdependency analysis model is used to examine ripple effects of

disruptions to outputs of component systems. The Leontief Input-Output model

is a holistic framework to estimate economic impacts and sector interdependen-

cies [HSC+08]. It is used to capture interconnectedness among different economical

sectors via the commodity or information flows and forecast how the operability of

interconnected systems is affected when one system output decreases by a certain

amount. Such an approach is suitable to model interdependencies of infrastructure

systems and has been adapted to critical infrastructure systems [HJ01, JH04].

The agent-based modelling framework allows looking into interdependencies and

vulnerabilities of infrastructures from the level of system components [RPK01]. Each

component is modelled as an agent: an autonomous system with specified behaviour

and interactions with other agents. Such an approach allows simulating interactions

between systems as well as with the physical world [KZ11]. Moreover, agents can

be modelled with the ability to learn about the environment and formulate unique

decision rules [EHK08]. Agent-based modelling permits simulation of an infrastruc-

ture system from simple behaviour of low level components that exhibit emergent

behaviour in cooperation. The model describes each agent with a set of rules, which

comprise the following basic characteristics [EHK08]:

• Location describes agent’s physical space, e.g. coordinates or region.
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• Capabilities describe agent’s interaction with the environment, e.g. how it

reacts to changes, shares knowledge and adapts to the changes.

• History is the agent’s memory of previous experiences, e.g. stress or ageing.

Agent based modelling uses bottom-up design strategy to describe the behaviour

of the agents [EHK08]. The emergent behaviour that arises from rules designed for

each agent and their interaction removes the need for system-level description. The

high-level models of the overall system (e.g. description of the behaviour of the

whole infrastructure) are no longer needed, because the high-level behaviour follows

from low-level interactions. This model provides a natural approach to distributed

systems [RD06, EHK08].

One of the main disadvantages of simulation models for critical infrastructures is

the lack of low-level data availability. Information about infrastructure component

systems is usually proprietary and considered very sensitive by the infrastructure

stakeholders [KZ11]. Empirical data (e.g. probabilities or other statistical data)

about events causing “interesting” failures or failure propagations is often lacking,

because such events can be quite rare. Researchers either try to scavenge for such

data from public documentation (e.g. [RIT+08]) or use intuition and common sense

to create “appropriate” data.

Furthermore, tackling complexity of infrastructure systems via simulation is a

challenge in itself. The common approaches are still usually limited in interdepen-

dency types, number of infrastructures and their metrics that are included in the

scope of analysis (e.g. [HDO11]). Also, the system complexity makes it infeasi-

ble to achieve good levels of assurance and correctness through the use of simula-

tion [Cia04].



Chapter 6

Case study

This chapter explores a way of applying dependable computing theory, particularly

top-down development, for describing and creating dependable system-of-systems

involving national infrastructure. This case study takes the task of describing and

modelling an abstract hospital example to illustrate the ideas presented in the thesis.

The focus is on relationships between systems, e.g. dependencies between hospital

and infrastructure systems. The selected hospital system could be generalised to

any other system, even infrastructure systems themselves.

The case study does not aim to produce a full model of an infrastructure system-

of-systems.1 The steps developing the hospital example give hints and directions on

the suggested approach. They aim to illustrate some of the concepts and benefits

of the ideas presented in this thesis:

• High-level description of infrastructure systems.

• Top-down development of infrastructure-based systems: refining abstract de-

scriptions to introduce relevant details.

• Recording system properties and assumptions—then ensuring they hold during

the development.

• Matching interfaces between dependent systems.

• Designing fault tolerance measures for non-reliable systems to increase system

dependability: e.g. redundancy or buffering.

• Planning processes and human interactions described and analysed as systems.

1The task of modelling a full infrastructure system is outside the scope of an MPhil thesis and
should actually be attempted with resources of a whole organisation.
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• Describing and modelling failure.

All of the techniques presented in this case study can be generalised and employed

in describing other infrastructure systems and similar concepts.

6.1 Approach

The case study illustrates the development of and reasoning about a system which

depends on infrastructure services. The system and its dependencies constitute a

system-of-systems. It is described in a top-down manner, starting with an abstract

view and introducing further details in the following levels. The case study aims

to illustrate how the dependencies, relationships and failure propagation can be

described in an abstract way, leading to a clear definition.

The aim of the case study is to take a system with related infrastructure systems.

Note that the example system can be substituted with different systems in other

scenarios: the approach will be transferable to other developments. For this reason,

the case study tries to be more abstract and general than perhaps required for a spe-

cific system development. The example system could also be another infrastructure

system, i.e. the case study is just a point of view to a complex system-of-systems

with the example system (the hospital) as a reference point here.

These models presented in the case study are informal and thus the reasoning

is also informal. It serves the purpose of illustrating the process and main ideas,

but does not aim to be exhaustive or formal. For this reason, a formal modelling

language is not used (e.g. VDM or Z) and instead an ad-hoc format is employed to

present the reasoning.

The approach taken in constructing a model is to focus on definitions of various

states of systems. A state description records important features of the system,

which can comprise properties of the system itself as well as assumptions on some

external dependencies. The majority of the case study is concerned with the correct

states, i.e. describing systems and their behaviours (as values of the specified prop-

erties) that provide the correct service. During the modelling, the goal is to find

the circumstances leading to an always-correct state of the reference system. Such

an approach ensures detailed specification of system functions that cannot cause

failures. The system faults are found and handled during abstract modelling and

development rather than during deployment. Nevertheless, modelling error states
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and failures leading to them can be important to system description. Section 6.2.7

explores how they can be incorporated within this framework.

Note that the term “correct service” is used throughout the case study with

assumption that such modelling would be accompanied with a (formal) specification

to justify the “correctness”. Otherwise, the wording “correct” should be taken to

mean “intended service” (see also Section 2.2).

Following a top-down approach, the system model is presented at several layers of

abstraction. Each level is introduced by refining a more abstract description. Note

that the order of refinement as presented in the case study is somewhat arbitrary.

Certain steps of refinement are independent and can be done in parallel or skipped

altogether. The case study is organised in a way that more concrete layers of

abstraction follow the abstract ones, though.

The presentation below uses a box below for the description of a system state.

It describes the different properties that would hold for a correctly working sys-

tem (failure modelling would involve the cases when the properties do not hold).

Furthermore, it aims to give descriptions of assumptions about relationships (depen-

dencies) with other systems. These properties and assumptions constitute a system

interface (boundary).

System

Systems: List of subsystems within this system-of-systems.

Property: System property, e.g. a description of some system fea-

ture. (The value in parenthesis describes system invariant:

whether the property must always hold for the described

state: true or false.)

Property: There can be multiple properties—each defined on its own.

Assumption: Assumptions on external conditions required for correct

state.

Needs: Dependencies on other systems.

The fields systems and needs are used to list related systems within the model.

The systems field is used for abstract decomposition, i.e. to write down the main

components/participants of the system described by the box. Thus the systems
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field talks either about sub-system decomposition or about a collection of related

systems that comprise a system-of-systems.

The list of properties can describe what the system in question does, how it be-

haves and what are the conditions and parameters for the system operation. In this

case study, all properties are boolean-valued: the property may hold for a specific

state of the system or not (values true and false, respectively). Furthermore, the

majority of the case study describes the correct state of the described system. The

properties are phrased in the way so that they are true for the correct state. This

is expressed as a system invariant, i.e. by writing down the value that will always

hold for the state. Some failure states (where certain properties become false) are

sketched and explored in Section 6.2.7. The properties can talk about individual

component/participant systems in the context of the whole system, span multiple

components or describe to the main system itself.

The assumptions are used to write down dependency considerations. They are

concerned with the properties of systems that the described one depends on. These

systems (dependencies) are listed in the needs field. The assumptions thus describe

the system environment, normally listing the conditions required for the correct

operation of the system. The assumptions contribute to the system interface and

must be checked when the interfaces are matched within a larger system-of-systems.

The following case study uses these boxes to describe different levels of abstrac-

tion of the modelled system. A single system can be described in incremental detail

using several boxes: each box would represent a different level of abstraction. Each

level is a refinement of the previous, more abstract, level of the system. The con-

crete description can introduce additional concepts, properties or related systems;

or revise the existing ones with increased detail and accuracy.

6.2 Infrastructure analysis: hospital case study

The case study takes a hospital as the reference system. It has been selected because

of the various dependencies on infrastructure systems: energy, ICT, water, waste,

human systems, etc. Note that any other system (even an infrastructure system)

could be substituted in the hospital’s place. The assumptions and dependencies

would differ, but the general approach and ideas would be very similar.
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6.2.1 Abstract hospital and electricity infrastructure

The case study focuses on relationships between systems in order to describe their

interfaces and possible failure propagations between them. To avoid unnecessary

details at the very abstract level, it is limited to two systems: the hospital system

and electricity infrastructure system, which it depends on.

The hospital and electricity systems comprise the basic system-of-systems of this

case study—so called “the world”. The world represents the top level system-of-

systems and records all top systems considered in the model. Figure 6.1 sketches

the systems introduced at this level. When new top-level systems are introduced

later during the refinement, they would need to be recorded in a refined version of

the world as well.

Hospital Electricity

World

supplies

Figure 6.1: World system-of-systems.

World

Systems: Hospital, Electricity

Property: Hospital is supplied with Electricity.

The abstract descriptions of hospital and electricity systems follow: they aim to

record the requirements and services of each system but do it at the appropriate

level of abstraction. In fact, at the very abstract level, only certain features of

interest are recorded, thus allowing to “slice” the model into manageable parts.

When describing system boundaries, they should only be described in terms of

concepts already introduced in the model. For example, the property “hospital is op-

erational” cannot reference details about what “operational” means. This property

records the intended requirement for the system but hides a lot of details behind

the statement. This is a way of insulating against internal details not needed at

this level (e.g. equipment, building, etc.). See Section 6.2.5 for details on hospital
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system refinement. In a full analysis, this would include various external assump-

tions, e.g. “absence of floods”, but these would come in later—this is an example

of abstraction.

Hospital

Property: Hospital treats patients. (true)

Property: Hospital is operational. (true) (H-Oper)

Assumption: Hospital is supplied by electricity sufficiently and reliably.

Needs: Electricity

Electricity

Property: Provides adequate electricity. (true)

Property: Electricity system operates reliably. (true)

All properties presented here are two-valued in general, i.e. “hospital is opera-

tional” can be either true or false. As mentioned before, the majority of the case

study is concerned with the correct state of the described systems. A correct state

of the hospital requires it to be operational, thus the invariant includes the require-

ment that property H-Oper holds, i.e. is true. The error state, where hospital is

not operational (invariant for H-Oper is false), would be used in failure description.

Section 6.2.7 elaborates more on modelling failures.

When collecting the systems within the “world” (or within any other com-

posite system), one needs to justify that the world configuration is correct. The

most important parts are reasoning about matching interfaces between the sys-

tems and identifying whether all assumptions and requirements are addressed and

satisfied. Assumptions that have not been addressed become assumptions of the

whole system—the “closed world”. They must be noted and verified to match the

deployment environment (see Section 6.3).

In the case of World, the interfaces between Hospital and Electricity do match

at this level of abstraction: Electricity provides “reliable” service to Hospital.

Note that “reliably” is not defined here due to the high level of abstraction: it
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hides a number of properties and requirements of actual systems. The example thus

records that there exists a reliability-based link between the hospital and electricity

systems. The actual properties contributing to a link’s “reliability” would then be

identified at further levels of detail.

6.2.2 Unreliable electricity

This level adds further details to the electricity system defined abstractly in Electric-

ity. The abstract system had an assumption that electricity is provided “reliably”.

The case study assumes that reliability of a single real world electricity system can-

not reach the level required by themselves. Therefore, when more concrete levels

of description that lead towards implementation (deployment with real-world sys-

tems) are introduced, it is important to model the real-world features and thus the

inherent unreliability of said power systems.

The next level of description must refine the abstract one. Figure 6.2 sketches

the refinement of the abstract Electricity system with a more detailed Electrici-

tyRW that involves real-world (RW in the name) unreliable power sources. The

Hospital Electricity

World

supplies

ElectricityRW

Power grid Power grid Diesel
generator Battery

refines

Ab
st
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ct
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nc
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Figure 6.2: Refinement of Electricity system with real-world components.

full description and justification of this level of abstraction follow. Note that this

refinement is only concerned with the electricity system and the Hospital system is

not affected. By satisfying the abstract properties on Electricity, the assumptions

on Hospital ensure the system interfaces are unchanged and match.

When the non-reliable electricity source is included in the detailed model, the

model needs to satisfy corresponding assumptions at the higher level of abstraction:
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that “Electricity supply is reliable.” Otherwise the refinement is not correct and

the abstract property about matching interfaces between hospital and electricity no

longer holds. This can lead to a failure propagating from unreliable electricity to

the hospital via the dependency.

The top-down approach forces the designer to reason about and justify more

concrete levels of the model. If the refinement is correct, the detailed model must

explore all cases and address possible faults of the detailed system interface. By

showing that refined electricity is indeed “reliable”, the designer ensures that the

original property of matching interfaces holds.

With real-world power systems being not reliable enough to satisfy the assump-

tion, further measures are needed to achieve the “reliably” status. Note that this

example just demonstrates a general idea, so the measures chosen are for illustration

purposes. Suitable means to achieve the necessary reliability and thus satisfy the as-

sumption is redundancy. The example selects two independent power grid sources,

thus improving redundancy, plus another redundant system (diesel generator) of

a different kind. To supplement that, one can also design buffering redundancy,

e.g. battery power source for electricity or some kind of water storage for water

infrastructures.

The ElectricityRW box outlines a way to describe a configuration of energy

dependency to achieve the necessary reliability. Some details and independent defi-

nitions of each system are omitted for the sake of conciseness.

ElectricityRW (“real world”)

Systems: Two Power grid supplies, Local diesel generator, Battery

Property: Power grid supplies are independent. (true)

Property: If one power grid is not operational, generator is on. (true)

Property: If grid and generator are not working, battery is used for

energy. (true)

Property: Battery supplies max Ebattery amount of electricity.

Property: Generator produces max Ediesel amount of electricity.

Property: [Properties on grid, generator and battery to achieve nec-

essary reliability in this configuration]
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The task of showing that the ElectricityRW configuration satisfies the “supplies

reliably” property in Electricity requires further reasoning. The overall argument

relies on the properties of each component system, in particular on their reliability.

For example, since ElectricityRW does not talk about any measures of reliability

yet, just about the configuration, the descriptions of component systems could be

abstract as well. For example, the following description of Power grid indicates an

adequate but non-reliable system without specifying further details.

Power grid

Property: Electricity supply is not reliable.

Property: Electricity supply is adequate.

Subsequent refinements of ElectricityRW could introduce some measure of reli-

ability and would need matching refinements of each power system. Then mathe-

matical formulas can be derived to describe the intended requirements, which would

be validated against each system description. All the derived (refined) requirements

would be eventually validated during deployment to ensure that the actual selected

systems implement the model—the overall correctness would hold then.

The question of failure propagation here is addressed by top-down development.

By showing a correct refinement, one can ensure that no failure propagation will

happen as long as the derived properties on ElectricityRW hold. The question of

failure modes is addressed during development, not during deployment or actual

use.

These two levels of abstraction demonstrate a single step of refinement in the

process of describing and developing an infrastructure model using a top-down ap-

proach. The first state described the intentions of the model and recorded high-level

assumptions. The next state introduced further real-world details and required rea-

soning to show that the chosen configuration satisfies the requirements defined in

the abstract state. The steps should continue in a similar manner until a satisfiable

level of detail is achieved.

For completeness, similar models and reasoning should be defined for other in-

frastructures as well. A hospital depends on energy, water, ICT and other infras-

tructures. The way of describing and modelling them is similar to the electricity

case shown above and thus will not be written down explicitly here. Note, however,
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that all the additional details refine the original abstract property “hospital is op-

erational”. Furthermore, consider that additional justification will be needed when

addressing multiple interdependencies between infrastructure systems, e.g. electric-

ity depends on ICT infrastructure for control services. However, as was mentioned

at the beginning of the case study, this example can easily be adapted with different

reference points, e.g. Hospital could be substituted by Electricity and the analysis

would be about its relationships with other infrastructures.

6.2.3 Human systems

The generality of a top-down approach allows expanding its application to the anal-

ysis and development of other types of systems as well. Following the idea that

“everything is a system”, similar modelling can be used to describe human systems.

Humans contribute to a large number of failures in systems and thus should be con-

sidered during development and analysis. Note that the effect of humans is twofold:

they can make mistakes because of tiredness, and they do not always follow rules,

etc; however they may react outside the designed rules for the benefit of the overall

system, e.g. take improvised but appropriate and correct decisions (see Section 2.4).

Consider the hospital example in this case study. The hospital staff treats the

patients and operates the hospital equipment. Failures in executing their tasks

as required would affect the outcome of the hospital’s service: “Hospital treats

patients.” This step of refinement tries to record the dependency of the Staff as

a human system. Figure 6.3 provides a sketch of this refinement step. Note that

this refinement step can be considered as parallel to the previous one (electricity

refinement). The order of taking these steps is not important, as the assumptions

on Hospital insulate against refinements in each system. Therefore in the abstract

step (Figure 6.3), either Electricity or ElectricityRW can be used.

At the abstract level, Hospital box defined dependency on electricity and can

similarly be extended for dependencies on other infrastructure systems. The refine-

ment step in this section introduces Staff as another system with assumptions in

the hospital. To avoid too much detail on infrastructures here, the boxes below

provide the human aspect of the hospital model.
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Figure 6.3: Refinement of Hospital system to include Staff.

HospitalS (“with staff”)

Property: Hospital treats patients.

Property: [Properties about hospital being operational are unchanged.]

Assumption: [Assumptions on electricity and other infrastructure sys-

tems.]

Assumption: Hospital is provided with staff performing their duties cor-

rectly.

Needs: Staff

Staff

Property: Staff performs their duties correctly. (true)

Property: Staff is trained adequately. (true)

Assumption: Staff working environment matches their training appropri-

ately.

Needs: Workplace, e.g. Hospital.

The hospital in the model is described as a black box, i.e. the case study records

the assumptions needed to fulfil hospital service correctly, but does not give details

on how the actual patient treatment is done. The Staff dependency is therefore
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recorded in a very similar manner to infrastructure systems: “staff performs cor-

rectly.”

This level of abstraction assumes perfect employees: if they are trained appro-

priately and work in an environment matching this training, they do not fail: “staff

performs correctly.” Therefore, in the “world” of this level (WorldS in Figure 6.3),

interfaces between HospitalS and Staff match correctly. Note that the assumption

“environment matches training” is not addressed at this level, because the model

does not yet talk about the hospital environment. However, when it is introduced

at more detailed levels, the dependency in the other direction—staff depends on

hospital to provide adequate working environment—will need justification.

Furthermore, depending on the scope of the system model, the “staff is trained”

property could be explicitly modelled as well. In a similar manner, one could treat

Training as another system, making “staff is trained” an assumption on the Training

system. A failure in training could propagate into staff service and eventually into

the hospital service. By extending the scope to address such assumptions, one could

be addressing faults, not the consequences, e.g. staff is not trained enough, thus it

is making mistakes and patient treatment goes wrong.

6.2.4 Human systems detailed

Following the top-down approach, human systems (Staff ) and corresponding Hos-

pital assumptions should be refined to an adequate level of detail. This case study

will not do that explicitly but instead provides some hints and considerations for

the process. The addition of further detail levels to human systems will have to

satisfy the abstract properties, in this case, “staff performs correctly.”

When the model introduces specialist roles, one will have to face the questions:

does the specialist role always perform its duty correctly; how critical is this role

for the correctness of staff service?

There are various situations that may arise and prevent the designer from en-

suring that assumptions are satisfied. For example, if the hospital has only a single

specialist with a specific critical role, he becomes a single point of failure. If affected

by illness, leaving the job or some other absence, the system as a whole can no longer

“perform duties correctly”. The situation should be approached with a failure mode

mindset, e.g. the system designer must investigate possible redundancy or other

measures: how quickly can an adequate replacement specialist be found, hired or

trained; maybe it is more suitable to have another specialist (redundancy) from the
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start? Furthermore, employees are rarely perfect and may fail accidentally. This

would appear if the Staff system is decomposed into smaller, more detailed subsys-

tems (even a single person could be treated as a system!). Again, to show correct

refinement, one must ensure that such failures are caught and handled somehow,

e.g. install a review process to the hospital staff operation.

Furthermore, to reiterate a point mentioned earlier in the case study, the ap-

proach is general enough to substitute any other system for the hospital. The staff

considerations would be similar, for example, if the reference system was an elec-

tricity infrastructure.

6.2.5 Hospital decomposed

The earlier steps in this case study illustrated top-down development directions to

describe infrastructure systems and human systems. To match the increasing level

of detail, the hospital system itself would also need to be refined. One could do that

by “pulling out” systems and keeping the hospital as a black box with assumptions

necessary for correct service (as was illustrated by the Staff system). Further details

could also be introduced by identifying the inner components and relationships of

the hospital system. For example, to describe dependencies on national infrastruc-

ture systems in more detail, the model could introduce Equipment, Building and

Information as component systems of Hospital. These sub-systems require external

services, such as ICT or Energy, thus the dependencies are also introduced. The

refinement here is done in two steps, which are sketched in Figure 6.4.

Along with the new sub-systems, their main properties are also specified. These

properties have to refine the main property in Hospital : “Hospital is operational.”

HospitalC (“components”)

Systems: Equipment, Building, Information

Assumption: [Assumptions on staff and infrastructure systems hold.]

Property: Hospital Equipment is operational. (true) (Hc-EqOper)

Property: Building is usable. (true) (Hc-Usable)

Property: Patient medical Information is available and up-to-date.

(true) (Hc-Info)
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Figure 6.4: Two step refinement of Hospital system to identify its components and
further dependencies.

The properties about Equipment, Building and Information refine the property

“Hospital is operational” in Hospital. To justify the refinement, it is important to

construct a retrieve function between the abstract and the concrete descriptions of

the refined system. The next step is to show that this function is total and adequate.

By proving these properties about the retrieve function, a correct data refinement

is ensured (see Section 3.6.6 for more details). This case study, as explained at the

beginning, does not aim for any formalisation in the model, but a quick sketch of

refinement justification for this particular step is provided below.

For this example of refinement, consider just one property in the abstract Hos-

pital, namely “Hospital is operational”. It will be referred using its identifier H-Oper

from here on. In the concrete HospitalC description, it is replaced by properties Hc-

EqOper, Hc-Usable and Hc-Info. A retrieve function defines how the concrete descrip-
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tion can be mapped back to the abstract one, i.e. function retr-HospitalC describes

what abstract Hospital description corresponds to the given concrete HospitalC :

retr-HospitalC: HospitalC → Hospital

This retrieve function needs to account for all properties in HospitalC and given

some (e.g. either correct or error) state of HospitalC, construct a corresponding

(again, either correct or error) state of Hospital. In this case study, the properties

of interest are mapped with the following rule: “All properties about Equipment,

Building and Information must hold (be true) for the Hospital to be operational,

i.e. for the abstract property to be true.” This can be represented as a conjunction

of the mentioned properties, e.g. the retrieve function retr-HospitalC is defined as:

Given HospitalC(Hc-EqOper, Hc-Usable, Hc-Info, . . . )

results in Hospital(H-Oper, . . . )

where H-Oper = Hc-EqOper and Hc-Usable and Hc-Info, . . .

Showing that the data refinement is correct requires proving totality and ad-

equacy of the retrieve function. The totality requires the retrieve function to be

applicable for any concrete state HospitalC. For the properties of interest, show-

ing totality is trivial, since the value for H-Oper can always be calculated from any

property values in HospitalC. For adequacy, it is necessary to show that there exists

a concrete state HospitalC for every abstract Hospital, i.e. that all abstract states

are accounted for by the refinement. In general (disregarding the invariant), the

abstract Hospital can have two states regarding property H-Oper, i.e. either it is

true or false. Proving adequacy means finding concrete states for each, which is

trivial. For example, the correct state where H-Oper=true is represented by Hos-

pitalC where all properties are also true. The false state is represented by any

HospitalC state where at least one of the properties is false. Note that since Hos-

pital and HospitalC actually only denote the correct states (their invariants require

properties to always be true), showing adequacy and totality is even easier, since

the properties can have only a single value. Because the retrieve function is both

total and adequate, the refinement is correct.

Further details in HospitalC2 refine the assumptions about dependencies on

national infrastructures by linking them to the introduced subsystems. This adds

precision to the hospital interface.
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HospitalC2 (“further component details”)

Systems: Equipment, Building, Information

Assumption: Equipment is supplied by electricity adequately and reliably.

Property: Equipment is in working order.

Assumption: Information is provided via ICT reliably.

Property: Information is available and up-to-date in ICT databases.

Assumption: Building is supplied by electricity adequately and reliably.

Assumption: Building is supplied by heating adequately and reliably.

Assumption: Building is supplied by water adequately and reliably.

Assumption: Building is supplied by waste removal adequately and reli-

ably.

Property: Building is in working order.

Assumption: [Assumptions on Staff hold.]

Needs: Electricity, Energy, ICT, Water, Waste, Staff

The new properties and assumptions refine corresponding properties and as-

sumptions in HospitalC. Refer to Figure 6.4 for the overview picture of both refine-

ment steps presented in this section.

6.2.6 Hospital functions

The modelling steps above focus on relationships between systems and how to in-

troduce details in the model while preserving the abstract properties. Often the

designer also needs to record the actual function of the system: what it is doing,

how does it affect the state of the system, etc. The state definition provides a

context for function definition: it describes assumptions and properties that always

hold for a correct system state.

This section provides some hints on how the hospital’s function could be de-

scribed. Figure 6.5 sketches the refinement that specifies additional objects and

properties in Hospital as well as defines a function on the refined state.

To illustrate the specification of a function, a simpler example is chosen that re-

quires introducing new objects to the model: Patients and Budget. They do not have

obvious relationships with external systems but are necessary for the description of

the function.
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Figure 6.5: Refinement of Hospital system to define Treat patient function.

HospitalP (“with patients”)

Objects: Patients, Budget

Property: There is a certain number of patients in the hospital.

Property: Hospital can accommodate Patientsmax number of patients.

Property: A fixed budget Budget is available for patient treatment.

Property: [Previous definitions on subsystems and their properties

hold.]

A system function is normally defined over the correct state of the system. In the

case study, it is described using a similar box to the state, but extended with several

more property types. The preconditions and postconditions define what is needed

for the function to performed, and what is the end result of the function having been

completed, respectively. Note that the case of a precondition not holding means that

the function cannot be performed, but does not mean that the system is erroneous:

for example, one cannot “pour water” into a full bucket (precondition “there is space

for water” does not hold), however the bucket being full is not an error state.
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Treat patient on HospitalP

Property: The patient receives diagnosis and treatment for his illness.

→ Pre: Patient is ill.

→ Pre: There are available beds in the hospital.

→ Pre: There are available funds in the Budget.

→ Pre: Staff, equipment and information resources are available.

Assumption: Patient has means to arrive at the hospital.

← Post: Patient received appropriate diagnosis and treatment.

← Post: Patient treatment costs are deducted from the Budget.

Assumption: Patient has means to leave the hospital.

The main function “treat patient” could also be described as a chain of three

operations: “admit patient”, “treat patient”, “release patient”. The choice depends

on what is intended to be described at the current level. The three operations would

allow for explicit partitioning of the treatment process, and would provide interme-

diate states of the hospital. The current choice of “treat patient”, for example, does

not actually reflect beds being occupied by the patient, since it describes only when

he is admitted and released. The reader should assume that the patient occupies

a bed sometime during the function execution. Since the intermediate states of a

patient being treated are not important at this level, the single-operation function

description is chosen.

6.2.7 Modelling failure

A significant benefit of the top-down approach, especially when designing new sys-

tems, is the ability to specify the intended behaviour and features of the system at

the abstract level: i.e. what the system is expected to be and do. The refinement

steps that follow need to preserve the abstract properties, thus ensuring that even

at low levels of system description the intended behaviour, dependability properties

and other requirements are adhered to. The majority of this case study follows this

approach of modelling a correct system: the refinement steps make sure that the

abstract properties are satisfied. Regarding failure analysis, this approach ensures

that there is no oversight in defining low-level system properties, i.e. the behaviour

is covered by the specification at all times. This means that all system functions
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have precise descriptions and all conditions needed for a successful operation of each

function are known. Consequently, if the system is in a correct state and all precon-

ditions of some function are satisfied, it is guaranteed to executed successfully and

leave the system in a correct state.

The correct system approach aims to identify and eliminate faults during devel-

opment. However, there are cases when modelling failure is useful. For example, to

include external faults (hazards) into the model, it is important to describe them

and how they affect the system. An external fault may lead to an erroneous state

of the system. These states can be modelled within the proposed framework using

the same properties as the correct states, but with values different from the ones

describing the correct state. In this case study, such error states would have false

property values, e.g. “Hospital Equipment is operational”=false (i.e. is not opera-

tional) in HospitalC (Section 6.2.5). The following box sketches such an error state

as HospitalC-ErrEquipment.

HospitalC-ErrEquipment (“equipment error”)

Systems: Equipment, . . .

Property: Hospital Equipment is operational. (false)

Property: [Other system property values may be unspecified.]

Assumption: [Assumptions on staff and infrastructure systems may be

unspecified.]

Note that there can be a large number of significant error states to accompany

possibly a single correct state of the system.

Having defined error states of interest, external fault events can be modelled as

special functions of the concerned system. For example, an external fault “Break

equipment” would be described as a function on system HospitalC with a result

state HospitalC-ErrEquipment, i.e. it takes the system from the correct to the error

state. Such approach allows using the same techniques to describe both the correct

operation and the various hazards.

While the external fault events take the system to an error state, corresponding

functions of the system, which take the system from an error back to the cor-

rect state, can be used to describe recovery activities. For example, a “Replace
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non-operational equipment” function would recover the system from HospitalC-

ErrEquipment state back to the correct HospitalC state.

Finally, the concept of failure within this approach can be found in two places.

Firstly, the correct system functions are defined for the correct system state. There-

fore, if the system is in an error state, the preconditions of said functions do not hold

and they should not be performed (or their result is undefined if they are executed

anyway). If the system function cannot be performed, it is a failure of the system

service. Secondly, the failures can be modelled explicitly, as system functions re-

quiring an error state. Such function definition would give a precise description of

an incorrect system service.

6.3 Planning considerations

In addition to modelling and describing the system itself, as illustrated in the steps

above, one needs to consider some implications about how the system is constructed

and deployed. Failures in system planning and design or the deployment processes

may introduce faults into the final infrastructure system.

As described in Chapter 4, a failure of planning or design process could be

making a bad design decision, introducing incorrect assumptions, etc. This would

lead to faults in the planned system, because the correctness of the planned system

rests on the correctness of initial assumptions and applied the development process.

To reason about the planning process, one does not necessarily need to switch

to another analysis method. The planning process (and all its related notions) can

also be accommodated in the “everything is a system” paradigm, thus reusing the

techniques mentioned in the case study and the thesis.

Planning

Property: Planning creates correct system specification.

Assumption: All system requirements are known.

Assumption: Planners perform their duties correctly.

Assumption: Planners have enough expertise to make decisions about the

planned system.

This abstract description of the planning system could go through the same



CHAPTER 6. CASE STUDY 85

refinement and reasoning process as the planned system, some of these are outlined

below:

• Extend to include human systems (design staff) and their training require-

ments;

• PlanningOrg (“organisations”) could consist of several organisations develop-

ing the complex system-of-systems: treat each as a system and ensure that

their interfaces match; PlanningOrg would refine Planning.

• Extend to include systems providing or ensuring expertise on infrastructure

development (experts, tools, etc);

• System designers or whole organisations can manifest failures (bad decision,

leave project, etc), so adequate fault tolerance (e.g. redundancy) should be

considered for the planning process. This can be experts reviewing the system

design, having replacement organisations or parallel interchangeable designs

of the system, etc.

Note that the above extensions must satisfy the top-down approach and correct

system refinement principles: they must all satisfy the assumptions and properties

of the original abstract system, e.g. “creates correct specification.”

The assumptions recorded about the modelled system must be addressed dur-

ing deployment. When configuring a complex system-of-systems, some of the as-

sumptions are matched by the configured systems (e.g. “requires reliable electricity

source” and “provides reliable electricity” in Section 6.2.2). Other assumptions are

not addressed fully or are left completely unaddressed. They become assumptions

of the whole system-of-systems and must be satisfied during deployment. For ex-

ample, if an assumption requires that “hospital has a car park within X distance”,

the deployment process must verify this to be true when building the whole system-

of-systems (hospital with infrastructure). Otherwise, the assumption is broken and

thus the whole design may no longer hold.



Chapter 7

Conclusions and future work

This thesis proposes ideas for a framework to describe, analyse and design national

infrastructure systems with a focus on their dependability. The established ideas

from dependable computing research can be adapted to reason about infrastructure

as well as other complex systems. The thesis has explored their applicability and

benefits in improving clarity and preciseness of description and analysis of infras-

tructure systems, their relationships and failure propagation. Further computing

science views, such as top-down thinking and formal specification for infrastructure

systems, have been investigated to address complexity issues in modern infrastruc-

tures. Additionally, this thesis proposes to extend the scope of these ideas to include

related failure-originating systems, e.g. human operator as human systems. This

also covers systems which generate other systems, e.g. planning, design, construc-

tion and maintenance systems. Failures in such generating systems give a rise to

latent faults and errors in the generated systems. This chapter summarises the ad-

vantages and applications of the proposed framework as well as explores avenues to

complete and enrich it further.

7.1 Improvements to description and analysis of

infrastructure systems

The research hypotheses (Chapter 1) propose to use dependable computing concepts

to reason about infrastructures. Specific proposed avenues include using the top-

down approach to tackle infrastructure complexity as well as considering planning

systems in the overall analysis. These hypotheses comprise the main aspects of the

reasoning approach proposed in this thesis and their application is investigated to

a certain extent by the examples and the case study.

86
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The main H1 hypothesis of this thesis suggests that concepts from dependable

computing can clarify interdependencies between infrastructure system and this clar-

ification would lead to increased dependability of infrastructures. Following this hy-

pothesis, the thesis re-examines the meanings and descriptions of failure and failure

propagation in infrastructure systems. These are central concepts to dependability

analysis and thus need precise meanings to facilitate their use, constructive discus-

sions and analysis in complex systems. The notion of a fault-error-failure chain is

an established concept in dependable computing research and is used to describe

the lifecycle of failure and its propagation (see Section 2.2). The thesis explores how

these concepts enrich description of failure in infrastructure systems as well as help

to identify how failure propagation manifests between systems. The notion of fail-

ure cannot be taken as an absolute concept such as “system stopped working”—its

description needs to consider how the failure is judged (perceived) by other systems,

what is the correct or intended service of the system, etc. When linked with system

specification, failure is disambiguated. The identification of errors and faults in

infrastructure systems brings benefits both in clearer understanding of cause of fail-

ure and in pointing towards appropriate fault tolerance measures to address them.

These activities would lead to increased dependability of the analysed infrastructure

systems, as proposed in hypothesis H1.

As proposed in the H2 hypothesis, top-down development techniques (Chap-

ter 3) are aimed at tackling complexity in national infrastructure systems and their

analysis. A top-down view provides a different perspective to mostly bottom-up

approaches used in infrastructure interdependency analysis (their overview is in

Section 5.2). Note that such bottom-up techniques are natural for existing infras-

tructure systems with networks of interconnected low-level physical components.

The top-down view, as argued in this thesis, could provide an alternative way of

approaching system complexity and establishing the required infrastructure system

properties at the start before designing the implementations to satisfy them. The

thesis argues that different levels of abstraction in top-down view facilitate reason-

ing about the infrastructure systems at a chosen level of detail. The properties of

interest, even spanning complex systems, such as system dependability, could be

defined and analysed in a model uncluttered by unnecessary details. The details are

added at subsequent levels of abstraction while ensuring that abstract properties

still hold (cf. reification). In such a way system complexity is tackled step-by-step

advancing through different levels of abstraction. While several examples within this
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thesis aim to illustrate such application to infrastructures, fully evaluating the ben-

efits of the top-down approach to infrastructure systems would, however, require

major resources for a full system development. Top-down approach applications,

especially complemented with formal methods, have shown success within the de-

pendable computing field. This gives credibility to the success of the proposed ideas

in applications to national infrastructure systems.

The importance of assumptions is emphasised in the thesis (Section 3.2). They

are often overlooked and/or not recorded, leading to mismatches between systems

about what is required for intended operation. Illustrating with examples from

failures in infrastructure systems, the thesis argues that all assumptions must be

identified and recorded to enable an informed and correct argument about the sys-

tem under consideration. This aims to address a significant proportion of failures

in infrastructures especially when concerned with complex systems-of-systems.

Furthermore, the thesis explores usage of (formal) specification from dependable

computing research to provide a framework of system description that includes as-

sumptions, system properties, description of correct service and techniques to evolve

the specification via data reification. A system can be described at its boundaries

and its relationship with other systems can be formally expressed as interface con-

tracts. The increased precision will give rise to well-grounded arguments about

infrastructure system service, dependability and failure propagation. Furthermore,

this approach provides a framework to identify and address faults in the system

during the development process.

The thesis argues that these dependable computing techniques would benefit

from the description and analysis of infrastructure systems and their dependability.

Furthermore, this approach could be expanded beyond the conventional systems, as

proposed in the H3 hypothesis. The argument is that related entities can be treated

as systems and included in the overall analysis in a similar manner. The approach

works for considering human operators in infrastructure systems (human systems—

Section 2.4), as well as planning, design, construction and maintenance processes of

infrastructure systems (systems generating systems—Chapter 4). These ideas allow

construction of a complete context for infrastructure system dependability analysis,

e.g. failure propagation origins can be traced to failures and then faults in human

or planning systems. This allows consideration of fault tolerance in the failure-

originating systems, e.g. address operator training; review the planning results,

etc.
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This thesis explores different examples to illustrate how the proposed framework

can be used for description and dependability analysis of national infrastructure

systems (e.g. Sections 2.6, 3.6, Chapter 6). They show how the concepts from de-

pendability research can be transferred and expanded upon to infrastructure systems

and lay groundwork for full analysis of such systems.

The ideas and techniques presented in this thesis together with practices in

dependable computing could help to understand infrastructure systems better and

such understanding could increase dependability of infrastructure systems. The

main evidence to support the claimed benefit to infrastructure systems dependability

comes from the dependable computing field. The proposed techniques and concepts

form an established reasoning approach there and have been used successfully to

design and analyse complex computing systems. The main contribution of this

thesis is illustrating how they can be adapted (with good chance of inheriting all

the benefits) to infrastructure systems. A detailed comparison with established

infrastructure analysis approaches (Section 5.2) would involve a major study that

is out of the scope of an MPhil thesis. Regardless, this thesis aims at providing

an alternative approach to infrastructure analysis. A different view of the systems

could lead to new insights and raise questions different from the ones in current

infrastructure analysis methods.

7.2 Future work

The proposed techniques provide a deeper understanding of interdependent infras-

tructures and failure propagation. The thesis shows that the ideas from dependable

computing research constitute a basis for a framework for infrastructure system de-

scription and dependability analysis. The benefits and potential of the approach

are illustrated in the conclusions above as well as in the whole thesis. To achieve

a mature framework, however, further work is required. While examples in the

thesis serve well to illustrate the ideas, a full top-down modelling and specification

of (at least partial) infrastructure systems or system-of-systems should be under-

taken. Research within ITRC has collected data about current and future states of

infrastructure, which would serve well for a detailed case study. The exercise would

evaluate the framework and fine-tune concepts used and suggested practices.

Adding formalisms to the model and specification of infrastructure systems im-

proves precision. By using full formal methods, one can benefit from the logical
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reasoning framework and formal semantics of mathematical description to gain high

assurance in the specification. Furthermore, tool support exists to ensure consis-

tency of the model and to verify properties of the system under consideration. The

framework proposed in this thesis would benefit from such formalisms and tool sup-

port. Further work is needed, however, to evaluate which formal methods are most

suitable for infrastructure systems, what additional formalisms are necessary to de-

scribe and reason about such systems, etc. Jones et al. [JHJ07] have already shown

that VDM specifications and rely-guarantee reasoning can be used to describe real-

world systems. Formal methods use for describing various systems-of-systems is

currently being investigated within the COMPASS project (e.g. in [FBP12]).

Dependability research in computing science offers further established approaches

that can be adapted for use in infrastructure systems. These can also be explored as

future work to include in the proposed framework or as alternative approaches. The

problem frames approach suggests the specification of each property of interest sepa-

rately instead of trying to accommodate them in a single hierarchy or view [Jac00a].

This allows us to focus on relevant details only (per property) in the analysis. Fur-

thermore, the problem description requires all entities to be defined, thus ensuring

that all necessary relationships are considered.



Bibliography

[Abr10] Jean-Raymond Abrial. Modeling in Event-B - System and Software Engi-
neering. Cambridge University Press, 2010.
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