NEWS & EVENTS

Understanding persistence to avoid underestimation of collective flood risk

Jan 12, 2016

Abstract

The assessment of collective risk for flood risk management requires a better understanding of the space-time characteristics of flood magnitude and occurrence. In particular, classic formulation of collective risk implies hypotheses concerning the independence of intensity and number of events over fixed time windows that are unlikely to be tenable in real-world hydroclimatic processes exhibiting persistence. In this study, we investigate the links between the serial correlation properties of 473 daily stream flow time series across the major river basins in Europe, and the characteristics of over-threshold events which are used as proxies for the estimation of collective risk. The aim is to understand if some key features of the daily stream flow data can be used to infer properties of extreme events making a more efficient and effective use of the available data. Using benchmark theoretical processes such as Hurst-Kolmogorov (HK), generalized HK (gHK), autoregressive fractionally integrated moving average (ARFIMA) models, and Fourier surrogate data preserving second order linear moments, our findings confirm and expand some results previously reported in the literature, namely: (1) the interplay between short range dependence (SRD) and long range dependence (LRD) can explain the majority of the serial dependence structure of deseasonalized data, but losing information on nonlinear dynamics; (2) the standardized return intervals between over-threshold values exhibit a sub-exponential Weibull-like distribution, implying a higher frequency of return intervals longer than expected under independence, and expected return intervals depending on the previous return intervals; this results in a tendency to observe short (long) inter-arrival times after short (long) inter-arrival times; (3) as the average intensity and the number of events over one-year time windows are not independent, years with larger events are also the more active in terms of number of events; and (4) persistence influences the distribution of the collective risk producing a spike of probability at zero, which describes the probability of years with no events, and a heavier upper tail, suggesting a probability of more extreme annual losses higher than expected under independence. These results provide new insights into the clustering of stream flow extremes, paving the way for more reliable simulation procedures of flood event sets to be used in flood risk management strategies.

Authors

Serinaldi, F., Kilsby, C.G. (2016) Understanding persistence to avoid underestimation of collective flood risk, Water, 2016(8): 152

LATEST NEWS

Predicting infrastructure demand using satellite imagery and machine learning

Predicting infrastructure demand using satellite imagery and machine learning

A lack of available demand data can hinder infrastructure assessment.  To better identify the ‘digital divide’ in telecoms demand, it is possible to predict cell phone adoption and spending using read more

New interactive article illustrates urban planning models in action

New interactive article illustrates urban planning models in action

Researchers collaborating between the universities of Oxford and Newcastle have launched an interactive article to illustrate how their models can be used to evaluate development scenarios in the read more

ITRC Webinar – Digital Infrastructure Strategies – from Copper to Fibre and 4G to 5G

ITRC Webinar – Digital Infrastructure Strategies – from Copper to Fibre and 4G to 5G

Exploring the advantages and challenges of rolling out next-generation wireless networks in the UK and around the world On 9 November Jim Hall, ITRC Director, chaired another well-attended ITRC ... read more

RESEARCH THEMES

ENERGY
TRANSPORT
WATER
DIGITAL COMMUNICATIONS
DEMOGRAPHICS
URBAN DEVELOPMENT
ECONOMICS
INFRASTRUCTURE
GOVERNANCE
NISMOD
RISK AND
RESILIENCE
RESEARCH SOFTWARE ENGINEERING
DATABASES